BZOJ1087状压DP 解题报告

1087: [SCOI2005]互不侵犯King

Description

  在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案。国王能攻击到它上下左右,以及左上
左下右上右下八个方向上附近的各一个格子,共8个格子。

Input

  只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N)

Output

  方案数。

Sample Input

3 2

Sample Output

16

状态压缩DP第一道题。作为第一道题。其实对于我这种动态规划都是自学的人来说。难度很大。但是。研读各大神犇的标程和解析后。开始慢慢的明白了一些,所以这里给一句忠告。没什么啃不下来的东西,如果啃不下来,那就多啃一会。

说起动态规划。总是让我想起一系列问题。什么是状态,怎么转移,怎样决策。而这道题,好像没怎么用道决策。但是。什么是状态呢?怎么样在这道题实现转移。这是值得思考的。不思考是没有进步的。

而这道题让我们一眼就可以想到DFS暴力枚举,以每个节点开始。枚举接下来每个点的位置。用二维数组来模拟位置的摆放。DFS递归的其实可以打表出来。而这个方法潜在的状态是上一个点的“位置”。每次枚举的是“位置”。

这道题思考起来。关键:压缩。当发现是这种二维,而且DFS要炸的题。首先考虑压缩。降维?康托-压缩状态?。这里想到的是,以一层为一个状态元素。而我们知道这个状态有很多。因为最多就只有9*9,就9层。每一层有9个格子。那么我们可以提前预处理出来一层里面每一种正确的摆放方式,如果这种方式正确则打上标记。这里国王就只有摆或者不摆,很显然我们可以想到有可以用二进制来表示一层的状态,这样,一层就被我们压缩成一个数。一种可行性方案也被我们压成了一个数。

接下来的就是对于每一层进行递推。我们都已经把每一种情况枚举出来。考虑每两层之间的关系,DP转移就成了枚举两层的可能组合性,之后就是方案数的转移。

这里给出   F[i][q][j]   (一种状态)   其中这里的i代表层数,这里的j代表这一层如果是j这个状态。q代表着一层及其以上的所有放的国王数量。这里的j就指的是放的方式,举个栗子   j==85   那么那一层的方式就是 1010101(2)就是这样der。

枚举每两层方式。F [i] [q+cnt_1[a]]  [a] += F[i-1] [q] [j];这个意思就是,如果上一层的摆放方式为J,这一层的摆放方式为a 那么这一层放q+(a方式的摆放国王的数量)的状态 是由 上一层摆放方式为j 摆放数量为q 的状态转移过来。(其中状态里存的是方案数)

#include<cstdio>
#include<algorithm>
using namespace std;
int cnt[512],map_1[512][512],cnt_1[512];
long long int f[10][512][512];
int n,k,all;
int first()
{
    int s;
    for(int i=0;i<=all;i++)
	if(((i>>1)&i)==0)//注释1
	{
	    cnt[i]=1;
	    s=0;
	    for(int j=i;j;j>>=1)s+=(j&1);
	    cnt_1[i]=s;
	}
    for(int i=0;i<=all;i++)if(cnt[i])
	for(int j=0;j<=all;j++)if(cnt[j])
	    if( ((i&j)==0) && (((i>>1)&j)==0) && (((j>>1)&i)==0))
		map_1[i][j]=1;   //注释2
    return 0;
}
int main()
{
    scanf("%d%d",&n,&k);
    all=(1<<n)-1;
    first( );
    for(int i=0;i<=all;++i)if(cnt[i])f[1][cnt_1[i]][i]=1;
    for(int i=2;i<=n;++i)
    	for(int a=0;a<=all;++a)if(cnt[a])
	    for(int j=0;j<=all;++j)if(cnt[j])
		if(map_1[j][a])
		     for(int q=cnt_1[j];q+cnt_1[a]<=k;++q)   //注释3
		            f[i][q+cnt_1[a]][a]+=f[i-1][q][j];
    long long int ans=0;
    for(int i=0;i<=all;++i)ans+=f[n][k][i];
    printf("%lld",ans);
    return 0;
}

注释:

1,这里作用是判断是否这种状态是不是正确。

2,判断两种状态能不能出线在一起(上下层)

3,这里枚举q,因为每一层结合上一层还有这一层摆放的方式有很多,所以要考虑全面。

最重要的一条

不开long long见祖宗

不开long long见祖宗

不开long long见祖宗

不开long long见祖宗

不开long long见祖宗

不开long long见祖宗

时间: 2024-11-05 15:55:09

BZOJ1087状压DP 解题报告的相关文章

poj - 1185 炮兵阵地 状压DP 解题报告

炮兵阵地 Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 21553   Accepted: 8363 Description 司令部的将军们打算在N*M的网格地图上部署他们的炮兵部队.一个N*M的地图由N行M列组成,地图的每一格可能是山地(用"H" 表示).也可能是平原(用"P"表示),例如以下图.在每一格平原地形上最多可以布置一支炮兵部队(山地上不可以部署炮兵部队).一支炮兵部队在地图上的

[BZOJ1087][SCOI2005]互不侵犯King解题报告|状压DP

在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. 好像若干月前非常Naive地去写过DFS... 然后其实作为状压DP是一道非常好的题啦>< 感觉直接无脑搞时间是下不来的 做了好几道预处理 使得最后DP的过程中没有任何一条转移是无用的 1 program bzoj1087; 2 var i,x,n,k,j,p,q,t1,t2:longint; 3 ans:int64; 4 a:array[-1

BZOJ1087:[SCOI2005]互不侵犯King(状压DP)

[SCOI2005]互不侵犯King Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N) Output 方案数. Sample Input 3 2 Sample Output 16 分析: 经典的状压DP题目,可我竟然调了很长时间都没对,后来发现是DP枚举范围错

[BZOJ1087] [SCOI2005] 互不侵犯King (状压dp)

Description 在N×N的棋盘里面放K个国王,使他们互不攻击,共有多少种摆放方案.国王能攻击到它上下左右,以及左上左下右上右下八个方向上附近的各一个格子,共8个格子. Input 只有一行,包含两个数N,K ( 1 <=N <=9, 0 <= K <= N * N) Output 方案数. Sample Input 3 2 Sample Output 16 HINT Source Solution 状压$dp$就是把状态压缩成二进制数,利用二进制的位运算改进算法的一种方法

刷题向》关于第一篇状压DP BZOJ1087 (EASY+)

这是本蒟蒻做的第一篇状压DP,有纪念意义. 这道题题目对状压DP十分友善,算是一道模板题. 分析题目,我们发现可以用0和1代表每一个格子的国王情况, 题目所说国王不能相邻放置,那么首先对于每一行是否合法的判断条件就出来了:就是对于情况X,如果X&(x<<1)==0,即为合法情况. 同理这样我们就可以得出每一行对于上一行是否合法的条件:(x&y)==0&&(x&(y<<1))==0&&(x&(y>>1))==

【BZOJ1087】 [SCOI2005]互不侵犯King 状压DP

经典状压DP. f[i][j][k]=sum(f[i-1][j-cnt[k]][k]); cnt[i]放置情况为i时的国王数量 前I行放置情况为k时国王数量为J 1 #include <iostream> 2 #include <cstdio> 3 using namespace std; 4 #define N 1<<9 5 long long ans; 6 int n,m; 7 int ok_1[N],cnt[N]; 8 int ok_2[N][N]; 9 long

bzoj1087 互不侵犯King 状压dp+bitset

题目传送门 题目大意:中文题面. 思路:又是格子,n又只有9,所以肯定是状压dp,很明显上面一行的摆放位置会影响下一行,所以先预处理出怎样的二进制摆放法可以放在上下相邻的两行,这里推荐使用bitset,否则会比较麻烦.然后dp的数组是f[ i ][ x ][ j ],表示第i行已经放置了x个国王,第 i 行的状态是 j .同时预处理出对于每一种二进制位,可以增加几个国王,计做cnt[ j ],所以得到 if(mp[ s ][ j ]) f[ i +1 ][x +cnt[ j ]][ j ]+=f

状压DP UVA 11795 Mega Man&#39;s Mission

题目传送门 1 /* 2 题意:洛克人有武器可以消灭机器人,还可以从被摧毁的机器人手里得到武器,问消灭全部机器人的顺序总数 3 状态压缩DP:看到数据只有16,就应该想到状压(并没有).因为是照解题报告写的,代码里加点注释,省的以后忘记了 4 */ 5 /************************************************ 6 * Author :Running_Time 7 * Created Time :2015-8-8 10:41:28 8 * File Nam

P1879 [USACO06NOV]玉米田Corn Fields 状压dp

链接在此! 正解:状压dp(emm……据说插头dp也可以趴但我不管!!!不会!!! 解题报告: ……我真的太菜了……我以为一个小时前要搞完的题目调错误调了一个小时……90分到100我差不多搞了一个小时…… 然后这题还是做过的……就很气,觉得确实是要搞下博客没事儿复习下不然做过的题目还花俩小时我真的哭死…… 先放上错误的90分代码讲一下错哪儿了(因为……其实100并不难是可以想到的……没有太大讲的意义,主要我太菜了所以才会搞这么久TT 点我♂看♂沙雕灵巧在线WA题 然后错误的点是最后一个点RE,开