Oulipo
Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 9731 Accepted Submission(s): 3859
Problem Description
The French author Georges Perec (1936–1982) once wrote a book, La disparition, without the letter ‘e‘. He was a member of the Oulipo group. A quote from the book:
Tout avait Pair normal, mais tout s’affirmait faux. Tout avait Fair normal, d’abord, puis surgissait l’inhumain, l’affolant. Il aurait voulu savoir où s’articulait l’association qui l’unissait au roman : stir son tapis, assaillant à tout instant son imagination,
l’intuition d’un tabou, la vision d’un mal obscur, d’un quoi vacant, d’un non-dit : la vision, l’avision d’un oubli commandant tout, où s’abolissait la raison : tout avait l’air normal mais…
Perec would probably have scored high (or rather, low) in the following contest. People are asked to write a perhaps even meaningful text on some subject with as few occurrences of a given “word” as possible. Our task is to provide the jury with a program that
counts these occurrences, in order to obtain a ranking of the competitors. These competitors often write very long texts with nonsense meaning; a sequence of 500,000 consecutive ‘T‘s is not unusual. And they never use spaces.
So we want to quickly find out how often a word, i.e., a given string, occurs in a text. More formally: given the alphabet {‘A‘, ‘B‘, ‘C‘, …, ‘Z‘} and two finite strings over that alphabet, a word W and a text T, count the number of occurrences of W in T. All
the consecutive characters of W must exactly match consecutive characters of T. Occurrences may overlap.
Input
The first line of the input file contains a single number: the number of test cases to follow. Each test case has the following format:
One line with the word W, a string over {‘A‘, ‘B‘, ‘C‘, …, ‘Z‘}, with 1 ≤ |W| ≤ 10,000 (here |W| denotes the length of the string W).
One line with the text T, a string over {‘A‘, ‘B‘, ‘C‘, …, ‘Z‘}, with |W| ≤ |T| ≤ 1,000,000.
Output
For every test case in the input file, the output should contain a single number, on a single line: the number of occurrences of the word W in the text T.
Sample Input
3 BAPC BAPC AZA AZAZAZA VERDI AVERDXIVYERDIAN
Sample Output
1 3 0
题意:求文本串里面有多少个模式串。
KMP中每次j遍历到m-1时表示一次匹配成功,下一次匹配肯定是从当前的i和next[j]开始
的,然后继续匹配就可以了。
不知道为什么hash过不去~
#include <cstring> #include <iostream> #include <cstdio> #include <algorithm> #include <vector> #include <cmath> using namespace std; #define maxn 1111111 char P[maxn], T[maxn]; int n, m; #define next Next int next[maxn]; void get_next (char *p) { int t; t = next[0] = -1; int j = 0; while (j+1 < m) { if (t < 0 || p[j] == p[t]) {//匹配 j++, t++; next[j] = t; } else //失配 t = next[t]; } } int kmp () { int ans = 0; get_next (P); int i = 0, j = 0; while (i < n && j < m) { if (j < 0 || T[i] == P[j]) { if (j == m-1) { ans++; j = next[j]; continue; } i++, j++; } else { j = next[j]; } } return ans; } int main () { int cas; cin >> cas; while (cas--) { scanf ("%s%s", P, T); n = strlen (T); m = strlen (P); printf ("%d\n", kmp ()); } return 0; }