Redis使用总结 (序列三)

概述:

1、为什么使用redis
2、使用redis有什么缺点
3、单线程的redis为什么这么快
4、redis的数据类型,以及每种数据类型的使用场景
5、redis的过期策略以及内存淘汰机制
6、redis和数据库双写一致性问题
7、如何应对缓存穿透和缓存雪崩问题
8、如何解决redis的并发竞争问题

1、为什么使用redis

分析:在项目中使用redis,主要是从两个角度去考虑:性能和并发。当然,redis还具备可以做分布式锁等其他功能,但是如果只是为了分布式锁这些其他功能,完全还有其他中间件(如zookpeer等)代替,并不是非要使用redis。因此,这个问题主要从性能和并发两个角度去答。

回答:如下所示,分为两点

(一)性能

如下图所示,我们在碰到需要执行耗时特别久,且结果不频繁变动的SQL,就特别适合将运行结果放入缓存。这样,后面的请求就去缓存中读取,使得请求能够迅速响应。

(二)并发

如下图所示,在大并发的情况下,所有的请求直接访问数据库,数据库会出现连接异常。这个时候,就需要使用redis做一个缓冲操作,让请求先访问到redis,而不是直接访问数据库。

2、使用redis有什么缺点

分析:大家用redis这么久,这个问题是必须要了解的,基本上使用redis都会碰到一些问题,常见的也就几个。

回答:主要是四个问题

(一)缓存和数据库双写一致性问题

(二)缓存雪崩问题

(三)缓存击穿问题

(四)缓存的并发竞争问题

3、单线程的redis为什么这么快

分析:这个问题其实是对redis内部机制的一个考察。其实根据经验,很多人其实都不知道redis是单线程工作模型。

回答:主要是以下三点

(一)纯内存操作
(二)单线程操作,避免了频繁的上下文切换
(三)采用了非阻塞I/O多路复用机制

经营方式一

客户每送来一份快递,小曲就让一个快递员盯着,然后快递员开车去送快递。慢慢的小曲就发现了这种经营方式存在下述问题

  • 几十个快递员基本上时间都花在了抢车上了,大部分快递员都处在闲置状态,谁抢到了车,谁就能去送快递
  • 随着快递的增多,快递员也越来越多,小曲发现快递店里越来越挤,没办法雇佣新的快递员了
  • 快递员之间的协调很花时间

综合上述缺点,小曲痛定思痛,提出了下面的经营方式

经营方式二

小曲只雇佣一个快递员。然后呢,客户送来的快递,小曲按送达地点标注好,然后依次放在一个地方。最后,那个快递员依次的去取快递,一次拿一个,然后开着车去送快递,送好了就回来拿下一个快递。

对比

上述两种经营方式对比,是不是明显觉得第二种,效率更高,更好呢。在上述比喻中:

  • 每个快递员——————>每个线程
  • 每个快递——————–>每个socket(I/O流)
  • 快递的送达地点————–>socket的不同状态
  • 客户送快递请求————–>来自客户端的请求
  • 小曲的经营方式————–>服务端运行的代码
  • 一辆车———————->CPU的核数

于是我们有如下结论

1、经营方式一就是传统的并发模型,每个I/O流(快递)都有一个新的线程(快递员)管理。

2、经营方式二就是I/O多路复用。只有单个线程(一个快递员),通过跟踪每个I/O流的状态(每个快递的送达地点),来管理多个I/O流。

下面类比到真实的redis线程模型,如图所示

参照上图,简单来说,就是。我们的redis-client在操作的时候,会产生具有不同事件类型的socket。在服务端,有一段I/0多路复用程序,将其置入队列之中。然后,文件事件分派器,依次去队列中取,转发到不同的事件处理器中。

需要说明的是,这个I/O多路复用机制,redis还提供了select、epoll、evport、kqueue等多路复用函数库,大家可以自行去了解。

4、redis的数据类型,以及每种数据类型的使用场景

分析:是不是觉得这个问题很基础,其实我也这么觉得。然而根据面试经验发现,至少百分八十的人答不上这个问题。建议,在项目中用到后,再类比记忆,体会更深,不要硬记。基本上,一个合格的程序员,五种类型都会用到。

回答:一共五种

(一)String

这个其实没啥好说的,最常规的set/get操作,value可以是String也可以是数字。一般做一些复杂的计数功能的缓存。

(二)hash

这里value存放的是结构化的对象,比较方便的就是操作其中的某个字段。博主在做单点登录的时候,就是用这种数据结构存储用户信息,以cookieId作为key,设置30分钟为缓存过期时间,能很好的模拟出类似session的效果。

(三)list

使用List的数据结构,可以做简单的消息队列的功能。另外还有一个就是,可以利用lrange命令,做基于redis的分页功能,性能极佳,用户体验好。本人还用一个场景,很合适---取行情信息。就也是个生产者和消费者的场景。LIST可以很好的完成排队,先进先出的原则。

(四)set

因为set堆放的是一堆不重复值的集合。所以可以做全局去重的功能。为什么不用JVM自带的Set进行去重?因为我们的系统一般都是集群部署,使用JVM自带的Set,比较麻烦,难道为了一个做一个全局去重,再起一个公共服务,太麻烦了。

另外,就是利用交集、并集、差集等操作,可以计算共同喜好,全部的喜好,自己独有的喜好等功能。

(五)sorted set

sorted set多了一个权重参数score,集合中的元素能够按score进行排列。可以做排行榜应用,取TOP N操作。

5、redis的过期策略以及内存淘汰机制

分析:这个问题其实相当重要,到底redis有没用到家,这个问题就可以看出来。比如你redis只能存5G数据,可是你写了10G,那会删5G的数据。怎么删的,这个问题思考过么?还有,你的数据已经设置了过期时间,但是时间到了,内存占用率还是比较高,有思考过原因么?

回答:

redis采用的是定期删除+惰性删除策略。

为什么不用定时删除策略?

定时删除,用一个定时器来负责监视key,过期则自动删除。虽然内存及时释放,但是十分消耗CPU资源。在大并发请求下,CPU要将时间应用在处理请求,而不是删除key,因此没有采用这一策略.

定期删除+惰性删除是如何工作的呢?

定期删除,redis默认每个100ms检查,是否有过期的key,有过期key则删除。需要说明的是,redis不是每个100ms将所有的key检查一次,而是随机抽取进行检查(如果每隔100ms,全部key进行检查,redis岂不是卡死)。因此,如果只采用定期删除策略,会导致很多key到时间没有删除。

于是,惰性删除派上用场。也就是说在你获取某个key的时候,redis会检查一下,这个key如果设置了过期时间那么是否过期了?如果过期了此时就会删除。

采用定期删除+惰性删除就没其他问题了么?

不是的,如果定期删除没删除key。然后你也没即时去请求key,也就是说惰性删除也没生效。这样,redis的内存会越来越高。那么就应该采用内存淘汰机制。

在redis.conf中有一行配置

# maxmemory-policy volatile-lru

该配置就是配内存淘汰策略的(什么,你没配过?好好反省一下自己)

1)noeviction:当内存不足以容纳新写入数据时,新写入操作会报错。应该没人用吧。

2)allkeys-lru:当内存不足以容纳新写入数据时,在键空间中,移除最近最少使用的key。推荐使用,目前项目在用这种。

3)allkeys-random:当内存不足以容纳新写入数据时,在键空间中,随机移除某个key。应该也没人用吧,你不删最少使用Key,去随机删。

4)volatile-lru:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,移除最近最少使用的key。这种情况一般是把redis既当缓存,又做持久化存储的时候才用。不推荐

5)volatile-random:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,随机移除某个key。依然不推荐

6)volatile-ttl:当内存不足以容纳新写入数据时,在设置了过期时间的键空间中,有更早过期时间的key优先移除。不推荐

ps:如果没有设置 expire 的key, 不满足先决条件(prerequisites); 那么 volatile-lru, volatile-random 和 volatile-ttl 策略的行为, 和 noeviction(不删除) 基本上一致。

6、redis和数据库双写一致性问题

分析:一致性问题是分布式常见问题,还可以再分为最终一致性和强一致性。数据库和缓存双写,就必然会存在不一致的问题。答这个问题,先明白一个前提。就是如果对数据有强一致性要求,不能放缓存。我们所做的一切,只能保证最终一致性。另外,我们所做的方案其实从根本上来说,只能说降低不一致发生的概率,无法完全避免。因此,有强一致性要求的数据,不能放缓存。

首先,采取正确更新策略,先更新数据库,再删缓存。其次,因为可能存在删除缓存失败的问题,提供一个补偿措施即可,例如利用消息队列。

7、如何应对缓存穿透和缓存雪崩问题

分析:这两个问题,说句实在话,一般中小型传统软件企业,很难碰到这个问题。如果有大并发的项目,流量有几百万左右。这两个问题一定要深刻考虑。

回答:如下所示

缓存穿透,即黑客故意去请求缓存中不存在的数据,导致所有的请求都怼到数据库上,从而数据库连接异常。

解决方案:

(一)利用互斥锁,缓存失效的时候,先去获得锁,得到锁了,再去请求数据库。没得到锁,则休眠一段时间重试

(二)采用异步更新策略,无论key是否取到值,都直接返回。value值中维护一个缓存失效时间,缓存如果过期,异步起一个线程去读数据库,更新缓存。需要做缓存预热(项目启动前,先加载缓存)操作。

(三)提供一个能迅速判断请求是否有效的拦截机制,比如,利用布隆过滤器,内部维护一系列合法有效的key。迅速判断出,请求所携带的Key是否合法有效。如果不合法,则直接返回。

缓存雪崩,即缓存同一时间大面积的失效,这个时候又来了一波请求,结果请求都怼到数据库上,从而导致数据库连接异常。

解决方案:

(一)给缓存的失效时间,加上一个随机值,避免集体失效。

(二)使用互斥锁,但是该方案吞吐量明显下降了。

(三)双缓存。我们有两个缓存,缓存A和缓存B。缓存A的失效时间为20分钟,缓存B不设失效时间。自己做缓存预热操作。然后细分以下几个小点

  • I 从缓存A读数据库,有则直接返回
  • II A没有数据,直接从B读数据,直接返回,并且异步启动一个更新线程。
  • III 更新线程同时更新缓存A和缓存B。

8、如何解决redis的并发竞争key问题

分析:这个问题大致就是,同时有多个子系统去set一个key。这个时候要注意什么呢?大家思考过么。需要说明一下,博主提前百度了一下,发现答案基本都是推荐用redis事务机制。博主不推荐使用redis的事务机制。因为我们的生产环境,基本都是redis集群环境,做了数据分片操作。你一个事务中有涉及到多个key操作的时候,这多个key不一定都存储在同一个redis-server上。因此,redis的事务机制,十分鸡肋。

回答:如下所示

(1)如果对这个key操作,不要求顺序

这种情况下,准备一个分布式锁,大家去抢锁,抢到锁就做set操作即可,比较简单。

(2)如果对这个key操作,要求顺序

假设有一个key1,系统A需要将key1设置为valueA,系统B需要将key1设置为valueB,系统C需要将key1设置为valueC.

期望按照key1的value值按照 valueA–>valueB–>valueC的顺序变化。这种时候我们在数据写入数据库的时候,需要保存一个时间戳。假设时间戳如下

系统A key 1 {valueA  3:00}

系统B key 1 {valueB  3:05}

系统C key 1 {valueC  3:10}

那么,假设这会系统B先抢到锁,将key1设置为{valueB 3:05}。接下来系统A抢到锁,发现自己的valueA的时间戳早于缓存中的时间戳,那就不做set操作了。以此类推。

其他方法,比如利用队列,将set方法变成串行访问也可以。总之,灵活变通。

原文地址:https://www.cnblogs.com/xiaozengzeng/p/12637896.html

时间: 2024-11-10 11:29:46

Redis使用总结 (序列三)的相关文章

Redis 小白指南(三)- 事务、过期、消息通知、管道和优化内存空间

Redis 小白指南(三)- 事务.过期.消息通知.管道和优化内存空间 简介 <Redis 小白指南(一)- 简介.安装.GUI 和 C# 驱动介绍> 讲的是 Redis 的介绍,以及如何在 Windows 上安装并使用,一些 GUI 工具和自己简单封装的 RedisHelper. <Redis 小白指南(二)- 聊聊五大类型:字符串.散列.列表.集合和有序集合>讲的是 Redis 中最核心的内容,最常用的就是和数据类型打交道. 目录 事务 过期时间 消息通知 管道 优化内存空间

ServiceStack.Redis之IRedisClient&lt;第三篇&gt;

事实上,IRedisClient里面的很多方法,其实就是Redis的命令名.只要对Redis的命令熟悉一点就能够非常快速地理解和掌握这些方法,趁着现在对Redis不是特别了解,我也对着命令来了解一下这些方法. 一.属性 IRedisClient的属性如下: 属性 说明 ConnectTimeout  连接超时 Db 当前数据库的ID或下标 DbSize  当前数据库的 key 的数量 HadExceptions    Hashes  存储复杂对象,一个value中有几个field  Host 

征服 Redis + Jedis + Spring (三)—— 列表操作【转】

一开始以为Spring下操作哈希表,列表,真就是那么土.恍惚间发现“stringRedisTemplate.opsForList()”的强大,抓紧时间恶补下. 相关链接: 征服 Redis 征服 Redis + Jedis 征服 Redis + Jedis + Spring (一)—— 配置&常规操作(GET SET DEL) 征服 Redis + Jedis + Spring (二)—— 哈希表操作(HMGET HMSET) 征服 Redis + Jedis + Spring (三)—— 列表

Redis 小白指南(三)- 事务、Watch 命令、过期、消息通知、管道、优化内存空间

Redis 小白指南(三)- 事务.Watch 命令.过期.消息通知.管道.优化内存空间 简介 目录 事务 Watch 命令 过期时间 排序 消息通知 管道 优化内存空间 事务 事务是一组命令的集合,事务和命令一样都是 Redis 的最小执行单位.即一个事务中的命令,要么都执行,要么都不执行.可以思考关系型数据库中的事务特性 ACID: (1)原子性(Atomicity):在事务结束时,其中包含的更新处理要么全部执行,要么完全不执行. (2)一致性(Consistency):事务中包含的处理,要

Redis实战之征服 Redis + Jedis + Spring (三)

一开始以为Spring下操作哈希表,列表,真就是那么土.恍惚间发现“stringRedisTemplate.opsForList()”的强大,抓紧时间恶补下. 通过spring-data-redis完成LINDEX, LLEN, LPOP, LPUSH, LRANGE, LREM, LSET, LTRIM, RPOP, RPUSH命令.其实还有一些命令,当前版本不支持.不过,这些List的操作方法可以实现队列,堆栈的正常操作,足够用了. 相关链接: Redis实战 Redis实战之Redis +

Redis笔记整理(三):进阶操作与高级部分

[TOC] Redis笔记整理(三):进阶操作与高级部分 Redis发布订阅 Redis发布订阅(pub/sub)是一种消息通信模式:发送者(pub)发送消息,订阅者(sub)接收消息. Redis客户端可以订阅任意数量的频道. 下图展示了频道channel1,以及订阅这个频道的三个客户端--client1,client2,client5之间的关系. 当有新消息通过PUBLISH命令发送给频道channel1时,这个消息就会被发送给订阅它的三个客户端: 相关操作命令如下: 命令 描述 PSUBS

分布式缓存技术redis学习系列(三)——redis高级应用(主从、事务与锁、持久化)

上文<详细讲解redis数据结构(内存模型)以及常用命令>介绍了redis的数据类型以及常用命令,本文我们来学习下redis的一些高级特性. 回到顶部 安全性设置 设置客户端操作秘密 redis安装好后,默认情况下登陆客户端和使用命令操作时不需要密码的.某些情况下,为了安全起见,我们可以设置在客户端连接后进行任何操作之前都要进行密码验证.修改redis.conf进行配置. [[email protected] ~]# vi /usr/local/redis/etc/redis.conf ###

Redis——学习之路三(初识redis config配置)

我们先看看config 默认情况下系统是怎么配置的.在命令行中输入 config get *(如图) 默认情况下有61配置信息,每一个命令占两行,第一行为配置名称信息,第二行为配置的具体信息. 我们就从上到下来理解一下这些配置信息中的某些配置: 1.dbfilename是本地持久化存储数据库文件名,默认为dump.rdb.我可以在安装目录文件夹下找到这个文件. 2.requirepass是密码,即连接服务器的密码,默认为空.下面我来设置一个密码然后用带密码的命令连接一遍. 3.msterauth

redis安装后修改三个地方

Redis学习笔记--启动警告问题的解决 如果启动前不对linux内核做任何更改,那么redis启动会报出警告,共三个:如下图所示 第一个警告:The TCP backlog setting of 511 cannot be enforced because /proc/sys/net/core/somaxconn is set to the lower value of 128.意思是:TCP  backlog设置值,511没有成功,因为 /proc/sys/net/core/somaxcon