python学习进度9(列表生成式,生成器和迭代器)

列表生成式


列表生成式即List Comprehensions,是Python内置的非常简单却强大的可以用来创建list的生成式。

举个例子,要生成list [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]可以用list(range(1, 11))

>>> list(range(1, 11))
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

但如果要生成[1x1, 2x2, 3x3, ..., 10x10]怎么做?方法一是循环:

>>> L = []
>>> for x in range(1, 11):
...    L.append(x * x)
...
>>> L
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

但是循环太繁琐,而列表生成式则可以用一行语句代替循环生成上面的list:

>>> [x * x for x in range(1, 11)]
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]

写列表生成式时,把要生成的元素x * x放到前面,后面跟for循环,就可以把list创建出来,十分有用,多写几次,很快就可以熟悉这种语法。

for循环后面还可以加上if判断,这样我们就可以筛选出仅偶数的平方:

>>> [x * x for x in range(1, 11) if x % 2 == 0]
[4, 16, 36, 64, 100]

还可以使用两层循环,可以生成全排列:

>>> [m + n for m in ‘ABC‘ for n in ‘XYZ‘]
[‘AX‘, ‘AY‘, ‘AZ‘, ‘BX‘, ‘BY‘, ‘BZ‘, ‘CX‘, ‘CY‘, ‘CZ‘]

三层和三层以上的循环就很少用到了。

运用列表生成式,可以写出非常简洁的代码。例如,列出当前目录下的所有文件和目录名,可以通过一行代码实现:

>>> import os # 导入os模块,模块的概念后面讲到
>>> [d for d in os.listdir(‘.‘)] # os.listdir可以列出文件和目录
[‘.emacs.d‘, ‘.ssh‘, ‘.Trash‘, ‘Adlm‘, ‘Applications‘, ‘Desktop‘, ‘Documents‘, ‘Downloads‘, ‘Library‘, ‘Movies‘, ‘Music‘, ‘Pictures‘, ‘Public‘, ‘VirtualBox VMs‘, ‘Workspace‘, ‘XCode‘]

for循环其实可以同时使用两个甚至多个变量,比如dictitems()可以同时迭代key和value:

>>> d = {‘x‘: ‘A‘, ‘y‘: ‘B‘, ‘z‘: ‘C‘ }
>>> for k, v in d.items():
...     print(k, ‘=‘, v)
...
y = B
x = A
z = C

因此,列表生成式也可以使用两个变量来生成list:

>>> d = {‘x‘: ‘A‘, ‘y‘: ‘B‘, ‘z‘: ‘C‘ }
>>> [k + ‘=‘ + v for k, v in d.items()]
[‘y=B‘, ‘x=A‘, ‘z=C‘]

最后把一个list中所有的字符串变成小写:

>>> L = [‘Hello‘, ‘World‘, ‘IBM‘, ‘Apple‘]
>>> [s.lower() for s in L]
[‘hello‘, ‘world‘, ‘ibm‘, ‘apple‘]

生成器


通过列表生成式,我们可以直接创建一个列表。但是,受到内存限制,列表容量肯定是有限的。而且,创建一个包含100万个元素的列表,不仅占用很大的存储空间,如果我们仅仅需要访问前面几个元素,那后面绝大多数元素占用的空间都白白浪费了。

所以,如果列表元素可以按照某种算法推算出来,那我们是否可以在循环的过程中不断推算出后续的元素呢?这样就不必创建完整的list,从而节省大量的空间。在Python中,这种一边循环一边计算的机制,称为生成器:generator。

要创建一个generator,有很多种方法。第一种方法很简单,只要把一个列表生成式的[]改成(),就创建了一个generator:

>>> L = [x * x for x in range(10)]
>>> L
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]
>>> g = (x * x for x in range(10))
>>> g
<generator object <genexpr> at 0x1022ef630>

创建Lg的区别仅在于最外层的[]()L是一个list,而g是一个generator。

我们可以直接打印出list的每一个元素,但我们怎么打印出generator的每一个元素呢?

如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值:

>>> next(g)
0
>>> next(g)
1
>>> next(g)
4
>>> next(g)
9
>>> next(g)
16
>>> next(g)
25
>>> next(g)
36
>>> next(g)
49
>>> next(g)
64
>>> next(g)
81
>>> next(g)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
StopIteration

我们讲过,generator保存的是算法,每次调用next(g),就计算出g的下一个元素的值,直到计算到最后一个元素,没有更多的元素时,抛出StopIteration的错误。

当然,上面这种不断调用next(g)实在是太变态了,正确的方法是使用for循环,因为generator也是可迭代对象:

>>> g = (x * x for x in range(10))
>>> for n in g:
...     print(n)
...
0
1
4
9
16
25
36
49
64
81

所以,我们创建了一个generator后,基本上永远不会调用next(),而是通过for循环来迭代它,并且不需要关心StopIteration的错误。

generator非常强大。如果推算的算法比较复杂,用类似列表生成式的for循环无法实现的时候,还可以用函数来实现。

比如,著名的斐波拉契数列(Fibonacci),除第一个和第二个数外,任意一个数都可由前两个数相加得到:

1, 1, 2, 3, 5, 8, 13, 21, 34, ...

斐波拉契数列用列表生成式写不出来,但是,用函数把它打印出来却很容易:

def fib(max):
    n, a, b = 0, 0, 1
    while n < max:
        print(b)
        a, b = b, a + b
        n = n + 1
    return ‘done‘

注意,赋值语句:

a, b = b, a + b

相当于:

t = (b, a + b) # t是一个tuple
a = t[0]
b = t[1]

但不必显式写出临时变量t就可以赋值。

 

原文地址:https://www.cnblogs.com/2205254761qq/p/12297508.html

时间: 2024-10-01 05:08:01

python学习进度9(列表生成式,生成器和迭代器)的相关文章

python学习道路(day5note)(列表生成式,生成器,装饰器,常用模块)

生成列表的方式 data = [1,2,3]  需求   每个数字加上1 # data = ( x*2 for x in range(5)) print(data) 列表生成式 后面的I赋予加1操作,i+q只能放在前面 加上三元运算可以 生成器 (惰性运算,算到哪个值就到哪个值,往后就不算了)就是一个推到行算法 中括号叫做列表生成式,小括号叫做生成器 从左到右执行  当我访问到后面的数时候,前面的就没了 这样也是可以取值的,从左到右 斐波拉契数列 ### ### 转为生成器 加了yield 叫做

Python学习九:列表生成式

列表生成式,是Python内置的一种极其强大的生成list的表达式. 如果要生成一个list [1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9] 可以用 range(1 , 10): [python] view plain copy print? >>> range(1, 9) [1, 2, 3, 4, 5, 6, 7, 8] 可是,如果要生成[1*1 , 2*2 , 3*3 , ... , 10*10] 怎么做呢?可以使用循环: [python] view plai

python高级特征:列表生成式;generator, 迭代器。

Python高级特性 列表生成式:不过一种语法糖 生成器:不过一个方法 迭代器: 列表生成式 Python内置的函数,来创建list. 简单的生成: >>> list(range(1,11)) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 复杂的生成:增加一个for循环. >>> a = [x*x for x in range(1, 11)] >>> a [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] 还

Python学习之三大名器-装饰器、迭代器、生成器

Python学习之三大名器-装饰器.迭代器.生成器 一.装饰器     装饰,顾名思义就是在原来的基础上进行美化及完善,器这里指函数,所以说装饰器就是装饰函数,也就是在不改变原来函数的代码及调用方式的前提下对原函数进行功能上的完善.其核心原理其实是利用闭包.     格式 @关键字+装饰函数          被装饰函数()      注意:@行必须顶头写而且是在被装饰函数的正上方     按照形式可以分为:无参装饰器和有参装饰器,有参装饰器即给装饰器加上参数     以下示例是一个无参装饰器,

Python学习之路-装饰器&生成器&正则表达式

装饰器 通俗的讲,装饰器就是在不改变源代码基础上,给源代码增加新功能. 不改变函数的源代码.调用方式.返回值等,给函数增加新功能. 经典案例:登录装饰器, def login_decorator(func):     def inner():         if USER_TEMP["status"] == False:             print("\033[31;1m用户未登录,请先登录\033[0m")             login_atm()

Python 字典items返回列表,iteritems返回迭代器

Python 字典items返回列表,iteritems返回迭代器 字典items()方法和iteritems()方法,是python字典的内建函数,分别会返回Python列表和迭代器,下面一起来看下字典items()和iteritems()的具体操作方法. 作用 python字典的items方法作用:是可以将字典中的所有项,以列表方式返回.如果对字典项的概念不理解,可以查看Python映射类型字典基础知识一文.因为字典是无序的,所以用items方法返回字典的所有项,也是没有顺序的.python

python列表生成式&amp;生成器&amp;迭代器

一.列表生成式 什么是列表生成式? 列表生成式是快速生成列表的一种方式.(貌似有些废话) 更专业点的说法:列表生成式即List Comprehensions,是Python内置的非常简单却强大的可以用来创建list的生成式. 在python2.7里 举个例子,要生成list [1,2,3,4,5],可以用range(1,6) >>> range(1,6) [1, 2, 3, 4, 5] 但是如果要生成[1x1,2x2,3x3,4x4,5x5]怎么做呢? 普通青年做法: >>&

Python学习笔记__3.4章 生成器

# 这是学习廖雪峰老师python教程的学习笔记 1.概览 列表元素按照某种算法推算出来,在循环的过程中不断推算出后续的元素.这种一边循环一边计算的机制,称为生成器:generator 1.1.创建 generator 1)方法一 只要把一个列表生成式的[]改成(),就创建了一个generator L = [x * x for x in range(10)]  #  这是列表生成式 g = (x * x for x in range(10)) #  这是generator >>> g &

s14 第4天 关于python3.0编码 函数式编程 装饰器 列表生成式 生成器 内置方法

python3 编码默认为unicode,unicode和utf-8都是默认支持中文的. 如果要python3的编码改为utf-8,则或者在一开始就声明全局使用utf-8 #_*_coding:utf-8_*_ 或者将字符串单独声明: a = "中文".encode("utf-8") 函数式编程 函数式编程中的函数指代的是数学中的函数. 函数式编程输入如果确定,则输出一定是确定的.函数中并没有很多逻辑运算 python是一个面向对象的语言,只是一部分支持函数式编程.