WebGL简易教程(二):向着色器传输数据

目录

  • 1. 概述
  • 2. 示例:绘制一个点(改进版)
    • 1) attribute变量
    • 2) uniform变量
    • 3) varying变量
  • 3. 结果
  • 4. 参考

1. 概述

在上一篇教程《WebGL简易教程(一):第一个简单示例》中,通过一个绘制点的例子,对WebGL中的可编程渲染管线有了个基本的认识。在之前绘制点的例子中,点的位置,点的大小,点的颜色,都是固定写在着色器中的,这样的程序是缺乏可扩展性的。

比如我想绘制一张地形(DEM),平时地形数据是保存在地形文件之中的。被程序加载之后,数据信息首先要被读取到内存,然后传递给显存,最后由显卡进行绘制。渲染管线之所以灵活强大,正是由于可以向负责绘制工作的着色器传递数据。

2. 示例:绘制一个点(改进版)

在上一篇绘制点例子之上进行改进,改进后的HelloPoint1.js代码如下:

// 顶点着色器程序
var VSHADER_SOURCE =
  'attribute vec4 a_Position;\n' + // attribute variable
  'void main() {\n' +
  '  gl_Position = a_Position;\n' + // Set the vertex coordinates of the point
  '  gl_PointSize = 10.0;\n' +                    // Set the point size
  '}\n';

// 片元着色器程序
var FSHADER_SOURCE =
  'precision mediump float;\n' +
  'uniform vec4 u_FragColor;\n' +  // uniform変数
  'void main() {\n' +
  '  gl_FragColor = u_FragColor;\n' + // Set the point color
  '}\n';

function main() {
  // 获取 <canvas> 元素
  var canvas = document.getElementById('webgl');

  // 获取WebGL渲染上下文
  var gl = getWebGLContext(canvas);
  if (!gl) {
    console.log('Failed to get the rendering context for WebGL');
    return;
  }

  // 初始化着色器
  if (!initShaders(gl, VSHADER_SOURCE, FSHADER_SOURCE)) {
    console.log('Failed to intialize shaders.');
    return;
  }

  // 获取attribute变量的存储位置
  var a_Position = gl.getAttribLocation(gl.program, 'a_Position');
  if (a_Position < 0) {
    console.log('Failed to get the storage location of a_Position');
    return;
  }

  // 将顶点位置传输给attribute变量
  gl.vertexAttrib3f(a_Position, 0.5, 0.5, 0.0);

  //获取u_FragColor变量的存储地址
  var u_FragColor = gl.getUniformLocation(gl.program, 'u_FragColor');
  if (!u_FragColor) {
    console.log('Failed to get the storage location of u_FragColor');
    return;
  }

  //将点的颜色传入到u_FragColor变量中
  gl.uniform4f(u_FragColor, 0.0, 0.8, 0.0, 1.0);

  // 指定清空<canvas>的颜色
  gl.clearColor(0.0, 0.0, 0.0, 1.0);

  // 清空<canvas>
  gl.clear(gl.COLOR_BUFFER_BIT);

  // 绘制一个点
  gl.drawArrays(gl.POINTS, 0, 1);
}

1) attribute变量

在顶点着色器中,可以看到声明了一个attribute的全局变量a_Position,并且将这其赋值给gl_Position:

// 顶点着色器程序
var VSHADER_SOURCE =
  'attribute vec4 a_Position;\n' + // attribute variable
  'void main() {\n' +
  '  gl_Position = a_Position;\n' + // Set the vertex coordinates of the point
  '  gl_PointSize = 10.0;\n' +                    // Set the point size
  '}\n';

attribute是glsl中三种变量声明之一,代表的是与顶点相关的数据,只能用在顶点着色器中。这个变量存储了从外部传输进顶点着色器的数据。

在shader中定义好attribute变量之后,还需要通过JS与shader进行交互。通过WebGL的渲染上下文变量gl,可以得到获取attribute变量的存储地址的方法getAttribLocation(),其定义如下:

通过这个函数,获取着色器中attribute变量的位置:

  // 获取attribute变量的存储位置
  var a_Position = gl.getAttribLocation(gl.program, 'a_Position');
  if (a_Position < 0) {
    console.log('Failed to get the storage location of a_Position');
    return;
  }

获取地址之后,就可以向attribute变量传送数据了。通过使用gl. vertexAttrib3f()函数来向着色器传入值。这里将想要绘制点的位置传送给顶点着色器。

  // 将顶点位置传输给attribute变量
  gl.vertexAttrib3f(a_Position, 0.5, 0.5, 0.0);

其函数定义如下:

注意这个函数是有一系列的同族函数,都是以基础函数名+参数个数+参数类型来命名的,以应付传输不同的数据。具体可以查阅WebGL的API。

2) uniform变量

同样的,在片元着色器中,声明了一个全局的uniform变量u_FragColor,并将其赋值给gl_FragColor:

// 片元着色器程序
var FSHADER_SOURCE =
  'precision mediump float;\n' +
  'uniform vec4 u_FragColor;\n' +  // uniform変数
  'void main() {\n' +
  '  gl_FragColor = u_FragColor;\n' + // Set the point color
  '}\n';

uniform是glsl中另外一种变量声明,表示的是JavaScript程序向顶点着色器和片元着色器传输的一致的(不变的)数据;也就是是说这种变量既可以用在顶点着色器也可以用于片元着色器。

与attribute变量类似,uniform变量也是先获取其地址,然后向其传值。这里将想要绘制的颜色传送给片元着色器:

//获取u_FragColor变量的存储地址
  var u_FragColor = gl.getUniformLocation(gl.program, 'u_FragColor');
  if (!u_FragColor) {
    console.log('Failed to get the storage location of u_FragColor');
    return;
  }

  //将点的颜色传入到u_FragColor变量中
  gl.uniform4f(u_FragColor, 0.0, 0.8, 0.0, 1.0);

可以看到uniform变量是通过gl.getUniformLocation()函数获取地址,gl.uniform4f()变量传送数据的。它们的函数定义如下:

3) varying变量

除了attribute变量和uniform变量之外,还有一种varying变量,它表示的是从顶点着色器流向片元着色器可变的变量。这一点会在以后讲到。如下所示为向着色器传输数据的方式:

3. 结果

再次打开HelloPoint1.html,其显示结果如下:

可以看到点的位置发生了变化,同时颜色也从红色变成了绿色。位置信息和颜色信息不再是硬编码在着色器中,而是从外部传入的。

4. 参考

本来部分代码和插图来自《WebGL编程指南》,源代码链接:https://share.weiyun.com/5VjlUKo ,密码:sw0x2x。会在此共享目录中持续更新后续的内容。

原文地址:https://www.cnblogs.com/charlee44/p/11334442.html

时间: 2024-08-11 07:44:51

WebGL简易教程(二):向着色器传输数据的相关文章

WebGL简易教程(四):颜色

目录 1. 概述 2. 示例:绘制三角形 1) 数据的组织 2) varying变量 3. 结果 4. 理解 1) 图形装配和光栅化 2) 内插过程 5. 参考 1. 概述 在上一篇教程<WebGL简易教程(三):绘制一个三角形(缓冲区对象)>中,通过使用缓冲区对象(buffer object)来向顶点着色器传送数据.那么,如果这些数据(与顶点相关的数据,如法向量.颜色等)需要继续传送到片元着色器该怎么办呢? 例如这里给三角形的每个顶点赋予不同的颜色,绘制一个彩色的三角形.这个时候就需要用到之

WebGL简易教程(十二):包围球与投影

目录 1. 概述 2. 实现详解 3. 具体代码 4. 参考 1. 概述 在之前的教程中,都是通过物体的包围盒来设置模型视图投影矩阵(MVP矩阵),来确定物体合适的位置的.但是在很多情况下,使用包围盒并不方便计算,可以利用包围盒再生成一个包围球,利用包围球来设置MVP矩阵. 在<WebGL简易教程(十):光照>中,给地形赋予了固定方向的平行光.这篇教程的例子就是想模拟在平行光的视角下地形的情况.对于点光源光,可以用透视投影来实现渲染的效果:而平行光就需要通过正射投影来模拟.并且,这种正射并不是

WebGL简易教程(六):第一个三维示例(使用模型视图投影变换)

目录 1. 概述 2. 示例:绘制多个三角形 2.1. Triangle_MVPMatrix.html 2.2. Triangle_MVPMatrix.js 2.2.1. 数据加入Z值 2.2.2. 加入深度测试 2.2.3. MVP矩阵设置 3. 结果 4. 参考 1. 概述 在上一篇教程<WebGL简易教程(五):图形变换(模型.视图.投影变换)>中,详细讲解了OpenGL\WebGL关于绘制场景的模型变换.视图变换以及投影变换的过程.不过那篇教程是纯理论知识,这里就具体结合一个实际的例子

WebGL简易教程(十):光照

目录 1. 概述 2. 原理 2.1. 光源类型 2.2. 反射类型 2.2.1. 环境反射(enviroment/ambient reflection) 2.2.2. 漫反射(diffuse reflection) 2.2.3. 综合 3. 实例 3.1. 具体代码 3.2. 改动详解 3.2.1. 设置日照 3.2.2. 着色器光照设置 4. 结果 5. 参考 1. 概述 在上一篇教程<WebGL简易教程(九):综合实例:地形的绘制>中,实现了对一个地形场景的渲染.在这篇教程中,就给这个地

WebGL简易教程(十一):纹理

目录 1. 概述 2. 实例 2.1. 准备纹理 2.2. 配置纹理 2.3. 使用纹理 3. 结果 4. 参考 1. 概述 在之前的之前的教程<WebGL简易教程(九):综合实例:地形的绘制>中,绘制了一个带颜色的地形场景.地形的颜色是根据高程赋予的RGB值,通过不同的颜色来表示地形的起伏,这是表达地形渲染的一种方式.除此之外,还可以将拍摄得到的数字影像,贴到地形上面,得到更逼真的地形效果.这就要用到我们这一章的新知识--纹理了. 这里用到的纹理图像,是一张从GoogleEarth上下载的卫

WebGL入门教程(二)-webgl绘制三角形

前面已经介绍过了webgl,WebGL入门教程(一)-初识webgl(http://www.cnblogs.com/bsman/p/6128447.html),也知道了如何绘制一个点,接下来就用webgl画出一个三角形. 效果图: 在WebGL入门教程(一)-初识webgl中,知道如何绘制一个点 //绘制一个点 gl.drawArrays(gl.POINTS, 0, 1); 但是图形是有多个点组成,那么就应该考虑如何绘制多个点,WebGL提供了一种很方便的机制,缓冲区对象(buffer obje

WebGL简易教程(五):图形变换(模型、视图、投影变换)

目录 1. 概述 2. 详论 1) 模型变换 (1) 平移变换 (2) 缩放变换 (3) 旋转变换 (4) 组合变换 2) 视图变换 (1) 原理 (2) 推导 3) 投影变换 (1) 透视投影 (2) 正射投影 3. 综合运用 4. 参考 1. 概述 通过之前的教程,对WebGL中可编程渲染管线的流程有了一定的认识.但是只有前面的知识还不足以绘制真正的三维场景,可以发现之前我们绘制的点.三角形的坐标都是[-1,1]之间,Z值的坐标都是采用的默认0值,而一般的三维场景都是很复杂的三维坐标.为了在

Direct3D 11 Tutorial 3: Shaders and Effect System_Direct3D 11 教程3:着色器和效果系统

概述 在上一个教程中,我们设置了一个顶点缓冲区并将一个三角形传递给GPU. 现在,我们将逐步完成图形管道并查看每个阶段的工作原理. 将解释着色器和效果系统的概念. 请注意,本教程与前一个源代码共享相同的源代码,但将强调不同的部分. 资源目录 (SDK root)\Samples\C++\Direct3D11\Tutorials\Tutorial03 Github仓库 图形管道 在上一个教程中,我们设置顶点缓冲区,然后将顶点布局与顶点着色器相关联. 现在,我们将解释着色器是什么以及它是如何工作的.

WebGL 着色器语言(GLSL ES)

1.类型转换内置函数 转换/函数/描述 转换为整形数/int(float)/将浮点数的小数部分删去,转换为整形数(比如,将3.14转换为3) 转换为整形数/intl(bool)/true被转换为1,false被转换为0 转换为浮点数/float(int)/将整形数转换为浮点数(比如,将8转换为8.0) 转换为浮点数/float(bool)/true被转换为1.0,false被转换为0.0 转换为布尔值/bool(int)/0被转换为false,其他非0倍转换为true 转换为布尔值/0.0被转换