luogu_P2054 bzoj 1965 洗牌 【题解】 快速幂 快速乘

题目链接:

  Luogu:https://www.luogu.org/problem/P2054

  bzoj:https://www.lydsy.com/JudgeOnline/problem.php?id=1965

找到规律:

  上一次在x位置,下一次就会在 x*2%(n+1) 位置

那么就是要求:

  x * (2^m) = L(mod n+1)

第一反应exgcd,但是突然感觉有点不太优秀。

因为n是偶数(题目说了)

所以2和n+1为互质

所以设 z *  2 =1(mod n+1)

  z就为2在mod n+1下的逆元

  z *  2 +(n+1)*y = 1

当 y=-1 时得出 z 最小为 n/2+1

所以 x=(n/2+1)^ m *L (mod n+1)

用一个快速幂和一个快速乘就可以切了。

不用快速乘中间会爆成负数。

代码如下:

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const ll maxn=1e10+10;
ll n,m,l;
inline ll qm(ll x,ll y){
    ll mod=(n+1),ans=0;
    x%=mod;
    while(y){
        if(y&1) ans=(ans+x)%mod;
        x=(x+x)%mod;
        y>>=1;
    }
    return ans%mod;
}
inline ll qp(ll x,ll y){
    ll mod=(n+1),ans=1;
    x%=mod;
    while(y){
        if(y&1) ans=qm(ans,x)%mod;
        x=qm(x,x)%mod;
        y>>=1;
    }
    return ans%mod;
}
int main()
{
    scanf("%lld%lld%lld",&n,&m,&l);
    ll ans=qp(n/2+1,m);
    ans=qm(ans,l);
    printf("%lld\n",ans);
    //system("pause");
    return 0;
}

原文地址:https://www.cnblogs.com/ChrisKKK/p/11442602.html

时间: 2024-11-08 23:40:27

luogu_P2054 bzoj 1965 洗牌 【题解】 快速幂 快速乘的相关文章

BZOJ 1965 洗牌

答案((n/2+1)^m*l)%(n+1). #include<iostream> #include<cstdio> #include<cmath> #include<cstring> #include<algorithm> using namespace std; long long n,m,l; long long mul(long long a,long long b) { long long d=(long long)floor(a*(l

hdu 5187 快速幂快速乘法

http://acm.hdu.edu.cn/showproblem.php?pid=5187 Problem Description As one of the most powerful brushes, zhx is required to give his juniors n problems. zhx thinks the ith problem's difficulty is i. He wants to arrange these problems in a beautiful wa

取模性质,快速幂,快速乘,gcd和最小公倍数

一.取模运算 取模(取余)运算法则: 1. (a+b)%p=(a%p+b%p)%p; 2.(a-b)%p=(a%p-b%p)%p; 3.(a*b)%p=(a%p * b%p)%p; 4.(a^b)%p=(   (a%p)^b  )%p; 5. (  (a+b)%p+c  )%p=( a+(b+c)%p  )%p; 6.( a*(b*c)%p )%p =( c*(a*b)%p )%p; 7.( (a+b)%p*c )%p= ( (a*c)%p + (b*c)%p )%p; 几条重要性质: 1.a≡

HDU - 5187 zhx&#39;s contest(快速幂+快速乘法)

作为史上最强的刷子之一,zhx的老师让他给学弟(mei)们出n道题.zhx认为第i道题的难度就是i.他想要让这些题目排列起来很漂亮. zhx认为一个漂亮的序列{ai}下列两个条件均需满足. 1:a1..ai是单调递减或者单调递增的. 2:ai..an是单调递减或者单调递增的. 他想你告诉他有多少种排列是漂亮的.因为答案很大,所以只需要输出答案模p之后的值. Input Multiply test cases(less than 10001000). Seek EOF as the end of

【BZOJ 1409】 Password 数论(扩展欧拉+矩阵快速幂+快速幂)

读了一下题就会很愉快的发现,这个数列是关于p的幂次的斐波那契数列,很愉快,然后就很愉快的发现可以矩阵快速幂一波,然后再一看数据范围就......然后由于上帝与集合对我的正确启示,我就发现这个东西可以用欧拉函数降一下幂,因为两个数一定互质因此不用再加一个phi(m),于是放心的乘吧宝贝!! #include <cstdlib> #include <cstring> #include <cstdio> #include <iostream> #include &

hdu 5187 快速幂+快速乘法

简单找出规律,答案为(2^n-2 )%p(1特判) 然而  n,p的最大值为 1e18 因此显然要快速幂,而且由于1e18 的平方超long long 所以在乘的时候要用快速乘法,快速乘法的原理和快速幂一样,a^b是 b个a相乘 ,快速乘法是b个a相加 #include <iostream> #include <cstdio> #include <cstring> #include <algorithm> using namespace std; long

快速幂&amp;&amp;快速幂驱魔

以下以求a的b次方来介绍[1] 把b转换成二进制数. 该二进制数第i位的权为 例如 11的二进制是1011 11 = 2³×1 + 2²×0 + 2¹×1 + 2º×1 因此,我们将a¹¹转化为算 __int64 pow3(inta,intb)//快速幂 { __Int64 r=1,base=a; while(b) { if(b&1) r*=base; base*=base; b>>=1;//① } return r; } __int64 qpow(int a,int b,int c)

ACM:a^b%p-数论-快速幂-快速乘

a^b Time Limit: 1000MS   Memory Limit: 65535KB   64bit IO Format: Description 求a的b次方,取模mod(1<=a,b,mod<=1e18) Input 多组输入,每组数据一行,3个正整数,分别为a,b,mod Output 每组数据输出一行,为答案 Sample Input 2 10 10000000 5 100 1 0 2 37 Sample Output 1024 0 0 //模版题,主要是考虑到1e18的巨大,

算法录 之 快速幂快速乘和矩阵快速幂。

1: 问题如下: 求 a^n % m 的值是多少?n是1到10^18次方的一个整数. 求一个数的n次方,朴素的算法就是直接for循环,O(N)的复杂度. 但是对于这个问题n实在是太大了,O(N)也会超时,那么需要更快的算法,快速幂算法. 要求 a^n,如果知道了 a^(n/2) 次方的话,再来个平方就可以了. 那么按照这个思路就能运用分治的思想了. 代码如下: 1 int _pow(int a,long long n,int m) { 2 if(n==0) return 1 % m; 3 4 l