『公交线路 状压dp 矩阵乘法加速』


公交线路

Description

小Z所在的城市有N个公交车站,排列在一条长(N-1)km的直线上,从左到右依次编号为1到N,相邻公交车站间的距离均为1km。 作为公交车线路的规划者,小Z调查了市民的需求,决定按下述规则设计线路:

1.设共K辆公交车,则1到K号站作为始发站,N-K+1到N号台作为终点站。

2.每个车站必须被一辆且仅一辆公交车经过(始发站和终点站也算被经过)。

3.公交车只能从编号较小的站台驶往编号较大的站台。

4.一辆公交车经过的相邻两个

站台间距离不得超过Pkm。 在最终设计线路之前,小Z想知道有多少种满足要求的方案。由于答案可能很大,你只

需求出答案对30031取模的结果。

Input Format

仅一行包含三个正整数N K P,分别表示公交车站数,公交车数,相邻站台的距离限制。

N<=10^9,1<P<=10,K<N,1<K<=P

Output Format

仅包含一个整数,表示满足要求的方案数对30031取模的结果。

Sample Input

10 2 4

Sample Output

81

解析

问题转换:求个\(n\)个变量\(x_{1-n}\)赋\([1,k]\)之间的值的方案数,需要满足:\(x_{1-k}\)取遍\(1-k\),\(x_{(n-k+1)-n}\)取遍\(1-k\),任意一个区间\([t,t+p-1]\)中\(1-k\)的数至少出现一次。

距离的限制其实就是上述问题转换中的最后一条限制。

考虑状压\(dp\),由于\(p\)很小,我们就压一下当前阶段那个长度为\(p\)的区间的赋值情况。也就是说,\(f[i][S]\)代表前\(i-1\)个变量一个完成赋值,区间\([i,i+p-1]\)中\(1-k\)这些数的赋值情况为\(S\)的方案数。\(S\)是一个长度为\(p\)的二进制数,共有\(k\)个\(1\),从最高位开始数,\(S\)的第\(j\)位为\(1\),代表\(x_{i+j-1}\)被赋值为了一个\(1-k\)之间的数(我们不关心每一个数的具体位置,只需要保证这\(k\)个数在这个区间内每个出现至少一次即可),作为当前区间合法性的关键值,其他变量随意。对于任意的\(S\),需满足最高位为\(1\),是因为我们必须保证第\(i\)位取,这样才能保证最后所有变量都赋了值。

转移当然是由上一个阶段转移而来,方程就是:
\[f[i][S]=\sum_{valid(S',S)} f[i-1][S']\]

如何判定两个状态直接可以转移?首先两个状态的区间只差了一个位置。也就是\(S'\)的最高位在\(S\)中不存在,那么我们就把最高位取走,然后在最低位后面补\(0\),如果此时\(S'\)是\(S\)的子集,那么我们只需在第\(i+p-1\)这个位置补上刚才取走的那个数就又是合法的方案了。所以,当操作完后的状态\(S'\)是\(S\)的子集时,可以转移。

\(Code:\)

#include <bits/stdc++.h>
using namespace std;
const int N = 1e5+20 , SIZE = 130 , Mod = 30031;
int n,K,P,f[N][SIZE],S[SIZE],tot,ans;
inline void input(void)
{
    scanf("%d%d%d",&n,&K,&P);
}
inline int add(int a,int b) { return a + b >= Mod ? a + b - Mod : a + b; }
inline void Add(int &a,int b) { a = add( a , b ); }
inline void DynamicProgram(void)
{
    for (int i=1<<P-1;i<1<<P;i++)
    {
        int cnt = 0;
        for (int j=1;j<=P;j++)
            cnt += ( i >> (j-1) & 1 );
        if ( cnt == K ) S[++tot] = i;
    }
    f[1][tot] = 1;
    for (int i=2;i<=n-K+1;i++)
        for (int j=1;j<=tot;j++)
            for (int k=1;k<=tot;k++)
            {
                int S1 = S[k] , S2 = S[j];
                int S3 = S1 - (1<<P-1) << 1;
                for (int l=1;l<=P;l++)
                    if ( not( S3 >> (l-1) & 1 ) && ( S3 + (1<<l-1) == S2 ) )
                        Add( f[i][j] , f[i-1][k] );
            }
}
int main(void)
{
    input();
    DynamicProgram();
    printf("%d\n",f[n-K+1][tot]);
    return 0;
}

这样的动态规划算法的时间复杂度为\(O(nC_{p-1}^{k-1})\),使用矩阵乘法加速,时间复杂度为\(O((C_{p-1}^{k-1})^3\log_2n)\)。

\(Code:\)

#include <bits/stdc++.h>
using namespace std;
const int N = 1e5+20 , SIZE = 130 , Mod = 30031;
int n,K,P,S[SIZE],f[SIZE],tot;
inline int add(int a,int b) { return a + b >= Mod ? a + b - Mod : a + b; }
inline int mul(int a,int b) { return 1LL * a * b % Mod; }
inline void Add(int &a,int b) { a = add( a , b ); }
struct Matrix
{
    int mat[SIZE][SIZE];
    Matrix () { memset( mat , 0 , sizeof mat ); }
    friend Matrix operator * (Matrix a,Matrix b)
    {
        Matrix c;
        for (int i=1;i<=tot;i++)
            for (int j=1;j<=tot;j++)
                for (int k=1;k<=tot;k++)
                    Add( c.mat[i][j] , mul( a.mat[i][k] , b.mat[k][j] ) );
        return c;
    }
};
Matrix Trans;
inline void Maxtrixmul(int *a,Matrix b)
{
    int c[SIZE] = {};
    for (int j=1;j<=tot;j++)
        for (int k=1;k<=tot;k++)
            Add( c[j] , mul( a[k] , b.mat[k][j] ) );
    memcpy( a , c , sizeof c );
}
inline void DynamicProgram(void)
{
    for (int i=1<<P-1;i<1<<P;i++)
    {
        int cnt = 0;
        for (int j=1;j<=P;j++)
            cnt += ( i >> (j-1) & 1 );
        if ( cnt == K ) S[++tot] = i;
    }
    for (int i=1;i<=tot;i++)
        for (int j=1;j<=tot;j++)
        {
            int S1 = S[i] , S2 = S[j];
            int S3 = S1 - (1<<P-1) << 1;
            for (int k=1;k<=P;k++)
                if ( not( S3 >> (k-1) & 1 ) && ( S3 + (1<<k-1) == S2 ) )
                    Trans.mat[i][j] = 1;
        }
    int T = n - K; f[tot] = 1;
    while ( T )
    {
        if ( 1 & T ) Maxtrixmul( f , Trans );
        Trans = Trans * Trans , T >>= 1;
    }
}
int main(void)
{
    scanf("%d%d%d",&n,&K,&P);
    DynamicProgram();
    printf("%d\n",f[tot]);
    return 0;
}


『公交线路 状压dp 矩阵乘法加速』

原文地址:https://www.cnblogs.com/Parsnip/p/11520457.html

时间: 2024-11-07 17:29:20

『公交线路 状压dp 矩阵乘法加速』的相关文章

【弱校胡策】2016.4.14 (bzoj2164)最短路+状压DP+矩阵乘法+高斯消元+树链剖分+线段树+背包DP

cyyz&qhyz&lwyz&gryz弱校胡策 命题人:cyyz ws_fqk T3暴力写挫了 50+10+0滚粗辣! 奇妙的约会(appointment.cpp/c/pas) [问题描述] DQS和sxb在网上结识后成为了非常好的朋友,并且都有着惊人 的OI水平.在NOI2333的比赛中,两人均拿到了金牌,并保送进入 HU/PKU.于是两人决定在这喜大普奔的时刻进行面基. NOI2333参赛选手众多,所以安排了n个考点,DQS在1号考点, 而sxb在n号考点.由于是举办全国性赛事

nyoj1273 河南省第九届省赛_&quot;宣传墙&quot;、状压DP+矩阵幂加速

宣传墙 时间限制:1000 ms  |  内存限制:65535 KB 难度:4 描述 ALPHA 小镇风景美丽,道路整齐,干净,到此旅游的游客特别多.CBA 镇长准备在一条道路南 面 4*N 的墙上做一系列的宣传.为了统一规划,CBA 镇长要求每个宣传栏只能占相邻的两个方格 位置.但这条道路被另一条道路分割成左右两段.CBA 镇长想知道,若每个位置都贴上宣传栏, 左右两段各有有多少种不同的张贴方案. 例如: N=6,M=3, K=2, 左,右边各有 5 种不同的张贴方案 输入 第一行: T 表示

[BZOJ 2004] [Hnoi2010] Bus 公交线路 【状压DP + 矩阵乘法】

题目链接: BZOJ - 2004 题目分析 看到题目完全不会..于是立即看神犇们的题解. 由于 p<=10 ,所以想到是使用状压.将每个连续的 p 个位置压缩成一个 p 位 2 进制数,其中共有 k 位是1,表示这 k 个位置是某辆 Bus 当前停下的位置.需要注意的是,每个状态的第一位必须是 1 ,这样保证了不会有重复的状态. 每个状态可以转移到右边的某些状态(由当前状态的第一个 1 移动).初始状态和终止状态都是前面 k 位是 1 .用矩阵转移 n - k 次. 代码 #include <

HDU 5434 Peace small elephant 状压dp+矩阵快速幂

题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5434 Peace small elephant Accepts: 38 Submissions: 108 Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) 问题描述 小明很喜欢国际象棋,尤其喜欢国际象棋里面的大象(只要无阻挡能够斜着走任意格),但是他觉得国际象棋里的大象太凶残了,于是他

BZOJ 4000: [TJOI2015]棋盘( 状压dp + 矩阵快速幂 )

状压dp, 然后转移都是一样的, 矩阵乘法+快速幂就行啦. O(logN*2^(3m)) --------------------------------------------------------------------------------------------- #include<cstdio> #include<cstring> #include<algorithm> using namespace std; #define b(x) (1 <&l

51Nod1626 B君的梦境 状压dp 矩阵

原文链接https://www.cnblogs.com/zhouzhendong/p/51Nod1626.html 题目传送门 - 51Nod1626 题意 题解 首先考虑形象的想象本题中的思维空间.我们把整个 2*2*3*n 的四维空间看作 n 个 2*2*3 的三维空间顺次排列.考虑到 1*1*1*2 的方块,我们如果把边长 2 放在第 4 维上,相当于是填充了连续两个三维空间的对应位置.否则,边长 1 就放在了第 4 维上,相当于在一个三维空间中填充 1*1*2 的方块. 然后我们考虑状压

【BZOJ2004】[Hnoi2010]Bus 公交线路 状压+矩阵乘法

[BZOJ2004][Hnoi2010]Bus 公交线路 Description 小Z所在的城市有N个公交车站,排列在一条长(N-1)km的直线上,从左到右依次编号为1到N,相邻公交车站间的距离均为1km. 作为公交车线路的规划者,小Z调查了市民的需求,决定按下述规则设计线路: 1.设共K辆公交车,则1到K号站作为始发站,N-K+1到N号台作为终点站. 2.每个车站必须被一辆且仅一辆公交车经过(始发站和终点站也算被经过). 3.公交车只能从编号较小的站台驶往编号较大的站台. 4.一辆公交车经过的

POJ 3420 Quad Tiling 状压DP+矩阵快速幂

链接:http://poj.org/problem?id=3420 题意:给一个4*N(1 ≤ N ≤ 1e9)的矩形空间,并且给不限块数的1*2的多米诺骨牌,问是由多少种方式能把这个矩形空间填满. 思路:看到这种问题果断想到状压,虽然是在看矩阵的时候看到的这道题.dp[i][j]表示在第i行状态为j的情况下的填满方式数,j的二进制表示中0表示对应位置上一行的骨牌是竖放,或者对应位置的骨牌是横放,1则表示该行该位置的骨牌是竖放.由于N最大1e9所以O(n)的DP绝对超时,用矩阵快速幂来加速DP递

瓷砖铺放 (状压DP+矩阵快速幂)

未加矩阵快速幂 50分 1 const dx:array[1..8,1..3] of longint= 2 ((-1,0,0),(-1,0,0),(1,0,0),(0,1,0),(-1,0,0),(-1,1,0),(0,1,0),(-1,0,1)); 3 dy:array[1..8,1..3] of longint= 4 ((0,1,0),(0,-1,0),(0,-1,0),(1,0,0),(0,1,-1),(0,0,-1),(1,0,-1),(0,1,0)); 5 mo=65521; 6 va