Swap
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2514 Accepted Submission(s): 900
Special Judge
Problem Description
Given an N*N matrix with each entry equal to 0 or 1. You can swap any two rows or any two columns. Can you find a way to make all the diagonal entries equal to 1?
Input
There are several test cases in the input. The first line of each test case is an integer N (1 <= N <= 100). Then N lines follow, each contains N numbers (0 or 1), separating by space, indicating the N*N matrix.
Output
For each test case, the first line contain the number of swaps M. Then M lines follow, whose format is “R a b” or “C a b”, indicating swapping the row a and row b, or swapping the column a and column b. (1 <= a, b <= N). Any correct answer will be accepted,
but M should be more than 1000.
If it is impossible to make all the diagonal entries equal to 1, output only one one containing “-1”.
Sample Input
2
0 1
1 0
2
1 0
1 0
Sample Output
1
R 1 2
-1
Source
2009 Multi-University Training Contest 1 - Host by TJU
题目大意:给你一个 n*n的 矩阵,使用行交换或者列交换的方式来使得矩阵的主对角线(左上到右下)都是1.
分析:对于这个题,不需要最少的操作次数,那么我们无论是怎样做,只要是搞定了这个问题,我们就胜利了,对于输出-1的情况,我们来行列匹配看看能否使得所有行都有列来匹配就好,如果没有,那么就不是完美匹配,也就是说输出-1,否则就一定有结果输出。
思路:
完美匹配:如果一个图的某个匹配中,所有的顶点都是匹配点,那么它就是一个完美匹配。图
4 是一个完美匹配。显然,完美匹配一定是最大匹配(完美匹配的任何一个点都已经匹配,添加一条新的匹配边一定会与已有的匹配边冲突)。但并非每个图都存在完美匹配。
遍历所有行,如果都有列匹配的话,就是一个完美匹配,否则输出-1.
如果是完美匹配,那么交换pri【】数组,使得pri【i】=i、
AC代码:
#include<stdio.h> #include<string.h> #include<algorithm> using namespace std; const int maxn = 505; int map[maxn][maxn]; //图的数组. int vis[maxn]; //标记数组. int pri[maxn]; int ans[maxn*2][2]; int n; int find(int x) { for(int i=1; i<=n; i++) { if(vis[i]==0&&map[i][x]) { vis[i]=1; if(pri[i]==-1||find(pri[i])) { pri[i]=x; return 1; } } } return 0; } int main() { while(~scanf("%d",&n)) { memset(pri,-1,sizeof(pri)); for(int i=1; i<=n; i++) { for(int j=1; j<=n; j++) { scanf("%d",&map[i][j]); } } int ok=1; for(int i=1; i<=n; i++) { memset(vis,0,sizeof(vis)); if(find(i))continue; else ok=0; } if(ok==0){printf("-1\n");continue;} int cont=0; for(int i=1;i<=n;i++) { if(pri[i]==i)continue; for(int j=1;j<=n;j++) { if(pri[j]==i) { swap(pri[i],pri[j]); ans[cont][0]=i;ans[cont++][1]=j; } } } printf("%d\n",cont); for(int i=0;i<cont;i++) { printf("R %d %d\n",ans[i][0],ans[i][1]); } } }