hadoop2.6.0 伪分布式搭建

haoop2.0的架构图

HDFS2的架构

负责数据的分布式存储

主从结构

主节点,可以有2个: namenode

从节点,有很多个: datanode

namenode负责:

接收用户操作请求,是用户操作的入口

维护文件系统的目录结构,称作命名空间

datanode负责:

存储文件

Yarn的架构

资源的调度和管理平台

主从结构

主节点,可以有2个: ResourceManager

从节点,有很多个: NodeManager

ResourceManager负责:

集群资源的分配与调度

MapReduce、Storm、Spark等应用,必须实现ApplicationMaster接口,才能被RM管理

NodeManager负责:

单节点资源的管理

MapRedece的架构

依赖磁盘io的批处理计算模型

主从结构

主节点,只有一个: MRAppMaster

MRAppMaster负责:

接收客户提交的计算任务

把计算任务分给TaskTrackers执行,即任务调度

监控TaskTracker的执行情况

相关文件分享连接:http://pan.baidu.com/s/1kUGEc2z

1、编译好的64位 的hadoop-2.6.0.tar.gz

2、jdk-7u79-linux-x64.tar.gz

3、hadoop2.6.0中的etc配置的8个文件

安装jdk

安装的软件

java解压后做软连接

jdk配置环境变量

关闭防火墙

配置主机名

配置hosts文件

设置免密码登录

生成密钥文件

生成authorized_keys

验证

安装hadoop2.6.0

解压hadoop,并创建软连接

配置环境变量

创建新目录

修改配置文件

一共修改8个文件,

1、配置log4j.properties文件

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Define some default values that can be overridden by system properties
hadoop.root.logger=INFO,console
hadoop.log.dir=/application/hadoop_repo/logs
hadoop.log.file=hadoop.log

# Define the root logger to the system property "hadoop.root.logger".
log4j.rootLogger=${hadoop.root.logger}, EventCounter

# Logging Threshold
log4j.threshold=ALL

# Null Appender
log4j.appender.NullAppender=org.apache.log4j.varia.NullAppender

#
# Rolling File Appender - cap space usage at 5gb.
#
hadoop.log.maxfilesize=256MB
hadoop.log.maxbackupindex=20
log4j.appender.RFA=org.apache.log4j.RollingFileAppender
log4j.appender.RFA.File=${hadoop.log.dir}/${hadoop.log.file}

log4j.appender.RFA.MaxFileSize=${hadoop.log.maxfilesize}
log4j.appender.RFA.MaxBackupIndex=${hadoop.log.maxbackupindex}

log4j.appender.RFA.layout=org.apache.log4j.PatternLayout

# Pattern format: Date LogLevel LoggerName LogMessage
log4j.appender.RFA.layout.ConversionPattern=%d{ISO8601} %p %c: %m%n
# Debugging Pattern format
#log4j.appender.RFA.layout.ConversionPattern=%d{ISO8601} %-5p %c{2} (%F:%M(%L)) - %m%n

#
# Daily Rolling File Appender
#

log4j.appender.DRFA=org.apache.log4j.DailyRollingFileAppender
log4j.appender.DRFA.File=${hadoop.log.dir}/${hadoop.log.file}

# Rollver at midnight
log4j.appender.DRFA.DatePattern=.yyyy-MM-dd

# 30-day backup
#log4j.appender.DRFA.MaxBackupIndex=30
log4j.appender.DRFA.layout=org.apache.log4j.PatternLayout

# Pattern format: Date LogLevel LoggerName LogMessage
log4j.appender.DRFA.layout.ConversionPattern=%d{ISO8601} %p %c: %m%n
# Debugging Pattern format
#log4j.appender.DRFA.layout.ConversionPattern=%d{ISO8601} %-5p %c{2} (%F:%M(%L)) - %m%n

#
# console
# Add "console" to rootlogger above if you want to use this
#

log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{2}: %m%n

#
# TaskLog Appender
#

#Default values
hadoop.tasklog.taskid=null
hadoop.tasklog.iscleanup=false
hadoop.tasklog.noKeepSplits=4
hadoop.tasklog.totalLogFileSize=100
hadoop.tasklog.purgeLogSplits=true
hadoop.tasklog.logsRetainHours=12

log4j.appender.TLA=org.apache.hadoop.mapred.TaskLogAppender
log4j.appender.TLA.taskId=${hadoop.tasklog.taskid}
log4j.appender.TLA.isCleanup=${hadoop.tasklog.iscleanup}
log4j.appender.TLA.totalLogFileSize=${hadoop.tasklog.totalLogFileSize}

log4j.appender.TLA.layout=org.apache.log4j.PatternLayout
log4j.appender.TLA.layout.ConversionPattern=%d{ISO8601} %p %c: %m%n

#
# HDFS block state change log from block manager
#
# Uncomment the following to suppress normal block state change
# messages from BlockManager in NameNode.
#log4j.logger.BlockStateChange=WARN

#
#Security appender
#
hadoop.security.logger=INFO,NullAppender
hadoop.security.log.maxfilesize=256MB
hadoop.security.log.maxbackupindex=20
log4j.category.SecurityLogger=${hadoop.security.logger}
hadoop.security.log.file=SecurityAuth-${user.name}.audit
log4j.appender.RFAS=org.apache.log4j.RollingFileAppender
log4j.appender.RFAS.File=${hadoop.log.dir}/${hadoop.security.log.file}
log4j.appender.RFAS.layout=org.apache.log4j.PatternLayout
log4j.appender.RFAS.layout.ConversionPattern=%d{ISO8601} %p %c: %m%n
log4j.appender.RFAS.MaxFileSize=${hadoop.security.log.maxfilesize}
log4j.appender.RFAS.MaxBackupIndex=${hadoop.security.log.maxbackupindex}

#
# Daily Rolling Security appender
#
log4j.appender.DRFAS=org.apache.log4j.DailyRollingFileAppender
log4j.appender.DRFAS.File=${hadoop.log.dir}/${hadoop.security.log.file}
log4j.appender.DRFAS.layout=org.apache.log4j.PatternLayout
log4j.appender.DRFAS.layout.ConversionPattern=%d{ISO8601} %p %c: %m%n
log4j.appender.DRFAS.DatePattern=.yyyy-MM-dd

#
# hadoop configuration logging
#

# Uncomment the following line to turn off configuration deprecation warnings.
# log4j.logger.org.apache.hadoop.conf.Configuration.deprecation=WARN

#
# hdfs audit logging
#
hdfs.audit.logger=INFO,NullAppender
hdfs.audit.log.maxfilesize=256MB
hdfs.audit.log.maxbackupindex=20
log4j.logger.org.apache.hadoop.hdfs.server.namenode.FSNamesystem.audit=${hdfs.audit.logger}
log4j.additivity.org.apache.hadoop.hdfs.server.namenode.FSNamesystem.audit=false
log4j.appender.RFAAUDIT=org.apache.log4j.RollingFileAppender
log4j.appender.RFAAUDIT.File=${hadoop.log.dir}/hdfs-audit.log
log4j.appender.RFAAUDIT.layout=org.apache.log4j.PatternLayout
log4j.appender.RFAAUDIT.layout.ConversionPattern=%d{ISO8601} %p %c{2}: %m%n
log4j.appender.RFAAUDIT.MaxFileSize=${hdfs.audit.log.maxfilesize}
log4j.appender.RFAAUDIT.MaxBackupIndex=${hdfs.audit.log.maxbackupindex}

#
# mapred audit logging
#
mapred.audit.logger=INFO,NullAppender
mapred.audit.log.maxfilesize=256MB
mapred.audit.log.maxbackupindex=20
log4j.logger.org.apache.hadoop.mapred.AuditLogger=${mapred.audit.logger}
log4j.additivity.org.apache.hadoop.mapred.AuditLogger=false
log4j.appender.MRAUDIT=org.apache.log4j.RollingFileAppender
log4j.appender.MRAUDIT.File=${hadoop.log.dir}/mapred-audit.log
log4j.appender.MRAUDIT.layout=org.apache.log4j.PatternLayout
log4j.appender.MRAUDIT.layout.ConversionPattern=%d{ISO8601} %p %c{2}: %m%n
log4j.appender.MRAUDIT.MaxFileSize=${mapred.audit.log.maxfilesize}
log4j.appender.MRAUDIT.MaxBackupIndex=${mapred.audit.log.maxbackupindex}

# Custom Logging levels

log4j.logger.org.apache.hadoop.mapred.JobTracker=DEBUG
log4j.logger.org.apache.hadoop.mapred.TaskTracker=DEBUG
#log4j.logger.org.apache.hadoop.hdfs.server.namenode.FSNamesystem.audit=DEBUG

# Jets3t library
log4j.logger.org.jets3t.service.impl.rest.httpclient.RestS3Service=ERROR

# AWS SDK & S3A FileSystem
log4j.logger.com.amazonaws=ERROR
log4j.logger.com.amazonaws.http.AmazonHttpClient=ERROR
log4j.logger.org.apache.hadoop.fs.s3a.S3AFileSystem=WARN

#
# Event Counter Appender
# Sends counts of logging messages at different severity levels to Hadoop Metrics.
#
log4j.appender.EventCounter=org.apache.hadoop.log.metrics.EventCounter

#
# Job Summary Appender
#
# Use following logger to send summary to separate file defined by
# hadoop.mapreduce.jobsummary.log.file :
# hadoop.mapreduce.jobsummary.logger=INFO,JSA
#
hadoop.mapreduce.jobsummary.logger=${hadoop.root.logger}
hadoop.mapreduce.jobsummary.log.file=hadoop-mapreduce.jobsummary.log
hadoop.mapreduce.jobsummary.log.maxfilesize=256MB
hadoop.mapreduce.jobsummary.log.maxbackupindex=20
log4j.appender.JSA=org.apache.log4j.RollingFileAppender
log4j.appender.JSA.File=${hadoop.log.dir}/${hadoop.mapreduce.jobsummary.log.file}
log4j.appender.JSA.MaxFileSize=${hadoop.mapreduce.jobsummary.log.maxfilesize}
log4j.appender.JSA.MaxBackupIndex=${hadoop.mapreduce.jobsummary.log.maxbackupindex}
log4j.appender.JSA.layout=org.apache.log4j.PatternLayout
log4j.appender.JSA.layout.ConversionPattern=%d{yy/MM/dd HH:mm:ss} %p %c{2}: %m%n
log4j.logger.org.apache.hadoop.mapred.JobInProgress$JobSummary=${hadoop.mapreduce.jobsummary.logger}
log4j.additivity.org.apache.hadoop.mapred.JobInProgress$JobSummary=false

#
# Yarn ResourceManager Application Summary Log
#
# Set the ResourceManager summary log filename
yarn.server.resourcemanager.appsummary.log.file=rm-appsummary.log
# Set the ResourceManager summary log level and appender
yarn.server.resourcemanager.appsummary.logger=${hadoop.root.logger}
#yarn.server.resourcemanager.appsummary.logger=INFO,RMSUMMARY

# To enable AppSummaryLogging for the RM,
# set yarn.server.resourcemanager.appsummary.logger to
# <LEVEL>,RMSUMMARY in hadoop-env.sh

# Appender for ResourceManager Application Summary Log
# Requires the following properties to be set
#    - hadoop.log.dir (Hadoop Log directory)
#    - yarn.server.resourcemanager.appsummary.log.file (resource manager app summary log filename)
#    - yarn.server.resourcemanager.appsummary.logger (resource manager app summary log level and appender)

log4j.logger.org.apache.hadoop.yarn.server.resourcemanager.RMAppManager$ApplicationSummary=${yarn.server.resourcemanager.appsummary.logger}
log4j.additivity.org.apache.hadoop.yarn.server.resourcemanager.RMAppManager$ApplicationSummary=false
log4j.appender.RMSUMMARY=org.apache.log4j.RollingFileAppender
log4j.appender.RMSUMMARY.File=${hadoop.log.dir}/${yarn.server.resourcemanager.appsummary.log.file}
log4j.appender.RMSUMMARY.MaxFileSize=256MB
log4j.appender.RMSUMMARY.MaxBackupIndex=20
log4j.appender.RMSUMMARY.layout=org.apache.log4j.PatternLayout
log4j.appender.RMSUMMARY.layout.ConversionPattern=%d{ISO8601} %p %c{2}: %m%n

# HS audit log configs
#mapreduce.hs.audit.logger=INFO,HSAUDIT
#log4j.logger.org.apache.hadoop.mapreduce.v2.hs.HSAuditLogger=${mapreduce.hs.audit.logger}
#log4j.additivity.org.apache.hadoop.mapreduce.v2.hs.HSAuditLogger=false
#log4j.appender.HSAUDIT=org.apache.log4j.DailyRollingFileAppender
#log4j.appender.HSAUDIT.File=${hadoop.log.dir}/hs-audit.log
#log4j.appender.HSAUDIT.layout=org.apache.log4j.PatternLayout
#log4j.appender.HSAUDIT.layout.ConversionPattern=%d{ISO8601} %p %c{2}: %m%n
#log4j.appender.HSAUDIT.DatePattern=.yyyy-MM-dd

# Http Server Request Logs
#log4j.logger.http.requests.namenode=INFO,namenoderequestlog
#log4j.appender.namenoderequestlog=org.apache.hadoop.http.HttpRequestLogAppender
#log4j.appender.namenoderequestlog.Filename=${hadoop.log.dir}/jetty-namenode-yyyy_mm_dd.log
#log4j.appender.namenoderequestlog.RetainDays=3

#log4j.logger.http.requests.datanode=INFO,datanoderequestlog
#log4j.appender.datanoderequestlog=org.apache.hadoop.http.HttpRequestLogAppender
#log4j.appender.datanoderequestlog.Filename=${hadoop.log.dir}/jetty-datanode-yyyy_mm_dd.log
#log4j.appender.datanoderequestlog.RetainDays=3

#log4j.logger.http.requests.resourcemanager=INFO,resourcemanagerrequestlog
#log4j.appender.resourcemanagerrequestlog=org.apache.hadoop.http.HttpRequestLogAppender
#log4j.appender.resourcemanagerrequestlog.Filename=${hadoop.log.dir}/jetty-resourcemanager-yyyy_mm_dd.log
#log4j.appender.resourcemanagerrequestlog.RetainDays=3

#log4j.logger.http.requests.jobhistory=INFO,jobhistoryrequestlog
#log4j.appender.jobhistoryrequestlog=org.apache.hadoop.http.HttpRequestLogAppender
#log4j.appender.jobhistoryrequestlog.Filename=${hadoop.log.dir}/jetty-jobhistory-yyyy_mm_dd.log
#log4j.appender.jobhistoryrequestlog.RetainDays=3

#log4j.logger.http.requests.nodemanager=INFO,nodemanagerrequestlog
#log4j.appender.nodemanagerrequestlog=org.apache.hadoop.http.HttpRequestLogAppender
#log4j.appender.nodemanagerrequestlog.Filename=${hadoop.log.dir}/jetty-nodemanager-yyyy_mm_dd.log
#log4j.appender.nodemanagerrequestlog.RetainDays=3<span style="color:#ff0000;">
</span>

2、配置hadoop-env.sh文件

# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# Set Hadoop-specific environment variables here.

# The only required environment variable is JAVA_HOME.  All others are
# optional.  When running a distributed configuration it is best to
# set JAVA_HOME in this file, so that it is correctly defined on
# remote nodes.

# The java implementation to use.
#export JAVA_HOME=/application/java

# The jsvc implementation to use. Jsvc is required to run secure datanodes
# that bind to privileged ports to provide authentication of data transfer
# protocol.  Jsvc is not required if SASL is configured for authentication of
# data transfer protocol using non-privileged ports.
#export JSVC_HOME=${JSVC_HOME}

export HADOOP_CONF_DIR=${HADOOP_CONF_DIR:-"/etc/hadoop"}

# Extra Java CLASSPATH elements.  Automatically insert capacity-scheduler.
for f in $HADOOP_HOME/contrib/capacity-scheduler/*.jar; do
  if [ "$HADOOP_CLASSPATH" ]; then
    export HADOOP_CLASSPATH=$HADOOP_CLASSPATH:$f
  else
    export HADOOP_CLASSPATH=$f
  fi
done

# The maximum amount of heap to use, in MB. Default is 1000.
#export HADOOP_HEAPSIZE=
#export HADOOP_NAMENODE_INIT_HEAPSIZE=""

# Extra Java runtime options.  Empty by default.
export HADOOP_OPTS="$HADOOP_OPTS -Djava.net.preferIPv4Stack=true"
# Command specific options appended to HADOOP_OPTS when specified
export HADOOP_NAMENODE_OPTS="-Dhadoop.security.logger=${HADOOP_SECURITY_LOGGER:-INFO,RFAS} -Dhdfs.audit.logger=${HDFS_AUDIT_LOGGER:-INFO,NullAppender} $HADOOP_NAMENODE_OPTS"
export HADOOP_DATANODE_OPTS="-Dhadoop.security.logger=ERROR,RFAS $HADOOP_DATANODE_OPTS"

export HADOOP_SECONDARYNAMENODE_OPTS="-Dhadoop.security.logger=${HADOOP_SECURITY_LOGGER:-INFO,RFAS} -Dhdfs.audit.logger=${HDFS_AUDIT_LOGGER:-INFO,NullAppender} $HADOOP_SECONDARYNAMENODE_OPTS"

export HADOOP_NFS3_OPTS="$HADOOP_NFS3_OPTS"
export HADOOP_PORTMAP_OPTS="-Xmx512m $HADOOP_PORTMAP_OPTS"

# The following applies to multiple commands (fs, dfs, fsck, distcp etc)
export HADOOP_CLIENT_OPTS="-Xmx512m $HADOOP_CLIENT_OPTS"
#HADOOP_JAVA_PLATFORM_OPTS="-XX:-UsePerfData $HADOOP_JAVA_PLATFORM_OPTS"

# On secure datanodes, user to run the datanode as after dropping privileges.
# This **MUST** be uncommented to enable secure HDFS if using privileged ports
# to provide authentication of data transfer protocol.  This **MUST NOT** be
# defined if SASL is configured for authentication of data transfer protocol
# using non-privileged ports.
export HADOOP_SECURE_DN_USER=${HADOOP_SECURE_DN_USER}

# Where log files are stored.  $HADOOP_HOME/logs by default.
#export HADOOP_LOG_DIR=/application/hadoop_repo/logs

# Where log files are stored in the secure data environment.
export HADOOP_SECURE_DN_LOG_DIR=${HADOOP_LOG_DIR}/${HADOOP_HDFS_USER}

###
# HDFS Mover specific parameters
###
# Specify the JVM options to be used when starting the HDFS Mover.
# These options will be appended to the options specified as HADOOP_OPTS
# and therefore may override any similar flags set in HADOOP_OPTS
#
# export HADOOP_MOVER_OPTS=""

###
# Advanced Users Only!
###

# The directory where pid files are stored. /tmp by default.
# NOTE: this should be set to a directory that can only be written to by
#       the user that will run the hadoop daemons.  Otherwise there is the
#       potential for a symlink attack.
export HADOOP_PID_DIR=${HADOOP_PID_DIR}
export HADOOP_SECURE_DN_PID_DIR=${HADOOP_PID_DIR}

# A string representing this instance of hadoop. $USER by default.
export HADOOP_IDENT_STRING=$USER

export JAVA_HOME=/application/java
export HADOOP_LOG_DIR=/application/hadoop_repo/logs
export HADOOP_ROOT_LOGGER=DEBUG,DRFA

3、配置yarn-env.sh文件

# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

# User for YARN daemons
export HADOOP_YARN_USER=${HADOOP_YARN_USER:-yarn}

# resolve links - $0 may be a softlink
export YARN_CONF_DIR="${YARN_CONF_DIR:-$HADOOP_YARN_HOME/conf}"

# some Java parameters
# export JAVA_HOME=/home/y/libexec/jdk1.6.0/
if [ "$JAVA_HOME" != "" ]; then
  #echo "run java in $JAVA_HOME"
  JAVA_HOME=$JAVA_HOME
fi

if [ "$JAVA_HOME" = "" ]; then
  echo "Error: JAVA_HOME is not set."
  exit 1
fi

JAVA=$JAVA_HOME/bin/java
JAVA_HEAP_MAX=-Xmx1000m 

# For setting YARN specific HEAP sizes please use this
# Parameter and set appropriately
# YARN_HEAPSIZE=1000

# check envvars which might override default args
if [ "$YARN_HEAPSIZE" != "" ]; then
  JAVA_HEAP_MAX="-Xmx""$YARN_HEAPSIZE""m"
fi

# Resource Manager specific parameters

# Specify the max Heapsize for the ResourceManager using a numerical value
# in the scale of MB. For example, to specify an jvm option of -Xmx1000m, set
# the value to 1000.
# This value will be overridden by an Xmx setting specified in either YARN_OPTS
# and/or YARN_RESOURCEMANAGER_OPTS.
# If not specified, the default value will be picked from either YARN_HEAPMAX
# or JAVA_HEAP_MAX with YARN_HEAPMAX as the preferred option of the two.
#export YARN_RESOURCEMANAGER_HEAPSIZE=1000

# Specify the max Heapsize for the timeline server using a numerical value
# in the scale of MB. For example, to specify an jvm option of -Xmx1000m, set
# the value to 1000.
# This value will be overridden by an Xmx setting specified in either YARN_OPTS
# and/or YARN_TIMELINESERVER_OPTS.
# If not specified, the default value will be picked from either YARN_HEAPMAX
# or JAVA_HEAP_MAX with YARN_HEAPMAX as the preferred option of the two.
#export YARN_TIMELINESERVER_HEAPSIZE=1000

# Specify the JVM options to be used when starting the ResourceManager.
# These options will be appended to the options specified as YARN_OPTS
# and therefore may override any similar flags set in YARN_OPTS
#export YARN_RESOURCEMANAGER_OPTS=

# Node Manager specific parameters

# Specify the max Heapsize for the NodeManager using a numerical value
# in the scale of MB. For example, to specify an jvm option of -Xmx1000m, set
# the value to 1000.
# This value will be overridden by an Xmx setting specified in either YARN_OPTS
# and/or YARN_NODEMANAGER_OPTS.
# If not specified, the default value will be picked from either YARN_HEAPMAX
# or JAVA_HEAP_MAX with YARN_HEAPMAX as the preferred option of the two.
#export YARN_NODEMANAGER_HEAPSIZE=1000

# Specify the JVM options to be used when starting the NodeManager.
# These options will be appended to the options specified as YARN_OPTS
# and therefore may override any similar flags set in YARN_OPTS
#export YARN_NODEMANAGER_OPTS=

# so that filenames w/ spaces are handled correctly in loops below
IFS=

# default log directory & file
if [ "$YARN_LOG_DIR" = "" ]; then
  YARN_LOG_DIR="$HADOOP_YARN_HOME/logs"
fi
if [ "$YARN_LOGFILE" = "" ]; then
  YARN_LOGFILE='yarn.log'
fi

# default policy file for service-level authorization
if [ "$YARN_POLICYFILE" = "" ]; then
  YARN_POLICYFILE="hadoop-policy.xml"
fi

# restore ordinary behaviour
unset IFS

YARN_OPTS="$YARN_OPTS -Dhadoop.log.dir=$YARN_LOG_DIR"
YARN_OPTS="$YARN_OPTS -Dyarn.log.dir=$YARN_LOG_DIR"
YARN_OPTS="$YARN_OPTS -Dhadoop.log.file=$YARN_LOGFILE"
YARN_OPTS="$YARN_OPTS -Dyarn.log.file=$YARN_LOGFILE"
YARN_OPTS="$YARN_OPTS -Dyarn.home.dir=$YARN_COMMON_HOME"
YARN_OPTS="$YARN_OPTS -Dyarn.id.str=$YARN_IDENT_STRING"
YARN_OPTS="$YARN_OPTS -Dhadoop.root.logger=${YARN_ROOT_LOGGER:-INFO,console}"
YARN_OPTS="$YARN_OPTS -Dyarn.root.logger=${YARN_ROOT_LOGGER:-INFO,console}"
if [ "x$JAVA_LIBRARY_PATH" != "x" ]; then
  YARN_OPTS="$YARN_OPTS -Djava.library.path=$JAVA_LIBRARY_PATH"
fi
YARN_OPTS="$YARN_OPTS -Dyarn.policy.file=$YARN_POLICYFILE"

export JAVA_HOME=/application/java
export YARN_LOG_DIR=/application/hadoop_repo/logs
export YARN_ROOT_LOGGER=DEBUG,DRFA<span style="color:#ff0000;">
</span>

4、配置core-site.xml文件

<?xml version="1.0" encoding="UTF-8"?>

<!-- Put site-specific property overrides in this file. -->

<configuration>
    <property>
        <name>fs.defaultFS</name>
        <value>hdfs://master:9000</value>
    </property>
    <property>
        <name>hadoop.tmp.dir</name>
        <value>/application/hadoop_repo/tmp</value>
	</property>
	<!--
    <property>
        <name>fs.trash.interval</name>
        <value>1440</value>
    </property>
	-->
</configuration><span style="color:#ff0000;">
</span>

5、配置hdfs-site.xml文件

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
  Licensed under the Apache License, Version 2.0 (the "License");
  you may not use this file except in compliance with the License.
  You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

  Unless required by applicable law or agreed to in writing, software
  distributed under the License is distributed on an "AS IS" BASIS,
  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  See the License for the specific language governing permissions and
  limitations under the License. See accompanying LICENSE file.
-->

<!-- Put site-specific property overrides in this file. -->

<configuration>
    <property>
        <name>dfs.namenode.name.dir</name>
        <value>file:///application/hadoop_repo/name</value>
    </property>
    <property>
        <name>dfs.datanode.data.dir</name>
        <value>file:///application/hadoop_repo/data</value>
    </property>
	<property>
	  <name>dfs.namenode.checkpoint.dir</name>
	  <value>file:///application/hadoop_repo/namesecondary</value>
	</property>
	<property>
        <name>dfs.namenode.secondary.http-address</name>
        <value>master:9001</value>
    </property>
    <property>
        <name>dfs.replication</name>
        <value>1</value>
    </property>
    <property>
        <name>dfs.webhdfs.enabled</name>
        <value>true</value>
    </property>
	<property>
        <name>dfs.permissions</name>
        <value>false</value>
    </property>
	<!--
	<property>
		<name>dfs.hosts</name>
		<value>/usr/local/hadoop-2.6.0/etc/hadoop/datanode-allow</value>
	</property>
	<property>
		<name>dfs.hosts.exclude</name>
		<value>/usr/local/hadoop-2.6.0/etc/hadoop/datanode-deny</value>
	</property>
	-->
</configuration><span style="color:#ff0000;">
</span>

6、配置mapred-site.xml文件

<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<!--
  Licensed under the Apache License, Version 2.0 (the "License");
  you may not use this file except in compliance with the License.
  You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

  Unless required by applicable law or agreed to in writing, software
  distributed under the License is distributed on an "AS IS" BASIS,
  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  See the License for the specific language governing permissions and
  limitations under the License. See accompanying LICENSE file.
-->

<!-- Put site-specific property overrides in this file. -->

<configuration>
    <property>
        <name>mapreduce.framework.name</name>
        <value>yarn</value>
    </property>
    <property>
        <name>mapreduce.jobhistory.address</name>
        <value>master:10020</value>
    </property>
    <property>
        <name>mapreduce.jobhistory.webapp.address</name>
        <value>master:19888</value>
    </property>
    <property>
        <name>yarn.app.mapreduce.am.staging-dir</name>
        <value>/history</value>
    </property>
	<property>
        <name>mapreduce.jobhistory.done-dir</name>
        <value>${yarn.app.mapreduce.am.staging-dir}/history/done</value>
    </property>
    <property>
        <name>mapreduce.jobhistory.intermediate-done-dir</name>
        <value>${yarn.app.mapreduce.am.staging-dir}/history/done_intermediate</value>
    </property>
	<property>
		<name>mapreduce.map.log.level</name>
		<value>DEBUG</value>
	</property>
	<property>
		<name>mapreduce.reduce.log.level</name>
		<value>DEBUG</value>
	</property>
</configuration>

7、配置yarn-site.xml文件

<?xml version="1.0"?>
<!--
  Licensed under the Apache License, Version 2.0 (the "License");
  you may not use this file except in compliance with the License.
  You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

  Unless required by applicable law or agreed to in writing, software
  distributed under the License is distributed on an "AS IS" BASIS,
  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  See the License for the specific language governing permissions and
  limitations under the License. See accompanying LICENSE file.
-->
<configuration>
    <property>
        <name>yarn.nodemanager.aux-services</name>
        <value>mapreduce_shuffle</value>
    </property>
	<property>
		<name>yarn.resourcemanager.hostname</name>
		<value>master</value>
	</property>
	<property>
        <name>yarn.resourcemanager.address</name>
        <value>master:8032</value>
    </property>
    <property>
        <name>yarn.resourcemanager.scheduler.address</name>
        <value>master:8030</value>
    </property>
    <property>
        <name>yarn.resourcemanager.resource-tracker.address</name>
        <value>master:8031</value>
    </property>
    <property>
        <name>yarn.resourcemanager.admin.address</name>
        <value>master:8033</value>
    </property>
    <property>
        <name>yarn.resourcemanager.webapp.address</name>
        <value>master:8088</value>
    </property>
	<property>
		<name>yarn.log-aggregation-enable</name>
		<value>true</value>
	</property>
</configuration><span style="color:#ff0000;">
</span>

8、配置slaves文件

在win7上改完后上传到linux中的hadoop/etc/hadoop/里面

格式化namenode

启动hadoop

hdfs简单操作

hadoop字数统计小例子

在win7上通过浏览器查看hadoop相关信息

hadoop内嵌有jetty(嵌入式服务器)

首先win7配置hosts文件

C:\Windows\System32\drivers\etc\hosts

查看hdfs相关信息

查看mapreduce的相关信息

时间: 2024-11-07 22:26:00

hadoop2.6.0 伪分布式搭建的相关文章

hadoop2.2.0伪分布式搭建

一.准备linux环境 1.更改VMware适配器设置 由于是在单机环境下进行学习的,因此选择适配器模式是host-only模式,如果想要联网,可以选择桥接模式,配置的方式差不多. 点击VMware快捷方式,右键打开文件所在位置 -> 双击vmnetcfg.exe -> VMnet1 host-only ->修改subnet ip 设置网段:192.168.85.0 子网掩码:255.255.255.0 -> apply -> ok 回到windows --> 打开网络

Hadoop2.2.0伪分布式搭建简述

简述了自己搭建Hadoop伪分布式的过程,方便以后查看参考. 环境:Vmware10+RedHat6.3+hadoop2.2.0+JDK1.7 Hadoop模式: 本地模式:只能其一个reduce和一个map,用于调试 伪分布式模式:通过一台机器模拟分布式,在学习时使用.验证逻辑是否正确 集群模式:工作的模式,有几百上千台机器. linux环境配 关闭防火墙 若是对外网提供的服务是绝对不能关闭防火墙的.而Hadoop一般是公司内部使用,有多台节点,且之间需要通信,此时若防火前将通信的端口屏蔽则无

hadoop2.2.0伪分布式搭建3--安装Hadoop

3.1上传hadoop安装包 3.2解压hadoop安装包 mkdir /cloud #解压到/cloud/目录下 tar -zxvf hadoop-2.2.0.tar.gz -C /cloud/ 3.3修改配置文件(5个) 第一个:hadoop-env.sh #在27行修改 export JAVA_HOME=/usr/java/jdk1.7.0_55 第二个:core-site.xml <configuration> <!-- 指定HDFS老大(namenode)的通信地址 -->

hadoop:hadoop2.2.0伪分布式搭建

1.准备Linux环境     1.0点击VMware快捷方式,右键打开文件所在位置 -> 双击vmnetcfg.exe -> VMnet1 host-only ->修改subnet ip 设置网段:192.168.68.0 子网掩码:255.255.255.0 -> apply -> ok          回到windows --> 打开网络和共享中心 -> 更改适配器设置 -> 右键VMnet1 -> 属性 -> 双击IPv4 ->

hadoop2.2.0伪分布式搭建1--准备Linux环境

1.0点击VMware快捷方式,右键打开文件所在位置 -> 双击vmnetcfg.exe -> VMnet1 host-only ->修改subnet ip 设置网段:192.168.1.0 子网掩码:255.255.255.0 -> apply -> ok 回到windows --> 打开网络和共享中心 -> 更改适配器设置 -> 右键VMnet1 -> 属性 -> 双击IPv4 -> 设置windows的IP:192.168.1.110

hadoop2.2.0伪分布式搭建2--安装JDK

2.1上传 2.2解压jdk #创建文件夹 mkdir /usr/java #解压 tar -zxvf jdk-7u55-linux-i586.tar.gz -C /usr/java/ 2.3将java添加到环境变量中 vim /etc/profile #在文件最后添加 export JAVA_HOME=/usr/java/jdk1.7.0_55 export PATH=$PATH:$JAVA_HOME/bin #刷新配置 source /etc/profile

在Win7虚拟机下搭建Hadoop2.6.0伪分布式环境

近几年大数据越来越火热.由于工作需要以及个人兴趣,最近开始学习大数据相关技术.学习过程中的一些经验教训希望能通过博文沉淀下来,与网友分享讨论,作为个人备忘. 第一篇,在win7虚拟机下搭建hadoop2.6.0伪分布式环境. 1. 所需要的软件 使用Vmware 11.0搭建虚拟机,安装Ubuntu 14.04.2系统. Jdk 1.7.0_80 Hadoop 2.6.0 2. 安装vmware和ubuntu 略 3. 在ubuntu中安装JDK 将jdk解压缩到目录:/home/vm/tool

琐碎-hadoop2.2.0伪分布式和完全分布式安装(centos6.4)

环境是centos6.4-32,hadoop2.2.0 伪分布式文档:http://pan.baidu.com/s/1kTrAcWB 完全分布式文档:http://pan.baidu.com/s/1hqIeBGw 和1.x.0.x有些不同,特别是yarn.

Dockerfile完成Hadoop2.6的伪分布式搭建

在 <Docker中搭建Hadoop-2.6单机伪分布式集群>中在容器中操作来搭建伪分布式的Hadoop集群,这一节中将主要通过Dokcerfile 来完成这项工作. 1 获取一个简单的Docker系统镜像,并建立一个容器. 1.1 这里我选择下载CentOS镜像 docker pull centos 1.2 通过docker tag命令将下载的CentOS镜像名称换成centos,并删除老标签 docker tag docker.io/centos centosdocker rmr dock