BP神经网络(手写数字识别)

1实验环境

实验环境:CPU [email protected],内存8G,windows10 64位操作系统

实现语言:python

实验数据:Mnist数据集

程序使用的数据库是mnist手写数字数据库,数据库有两个版本,一个是别人做好的.mat格式,训练数据有60000条,每条是一个784维的向量,是一张28*28图片按从上到下从左到右向量化后的结果,60000条数据是随机的。测试数据有10000条。另一个版本是图片版的,按0~9把训练集和测试集分为10个文件夹。这里选取.mat格式的数据源。

2 BP(back propagation)神经网络

是一种按照误差逆向传播算法训练的多层前馈神经网络,是目前应用最广泛的神经网络。从结构上讲,BP网络具有输入层、隐藏层和输出层。

3图像转换成数据

图像是由像素组成,每个像素点由红(Red)、绿(Green)、蓝(Blue)三原色组成的,可用RGB表示。例如一个28*28的图片

放大后

图像可以存储成3个28*28的矩阵,第一个表示R的取值(0~255)、第二个表示G的取值(0~255)、第三个表示B的取值(0~255)。

而本例只表示黑白颜色即可,可以将上图转换为1个28*28的矩阵,白~黑由0~255表示,例如颜色越浅数字越小,0表示白,255表示黑。而mnist的mat格式数据源已经将60000条训练集和10000条测试集做了上述处理。

4感知机

感知机接收一些二元变量,然后输出一个二元变量。

上图的感知机模型有三个输入,一个输出。 怎样计算输出值呢? Rosenblatt提出了一个简单的算法。他引入了新的实数值变量:。用于表示相对于输出变量每个输入变量的重要性(权重)。

通过变化w和 threshold我们就得到了不同的感知机模型。

5 Sigmoid神经元

对于一个神经网络而言,什么是学习?我们可以认为学习就是给定输入,不断的调整各个权重和偏置,以使得神经网络的输出就是我们想要的结果。这就要求神经网络具有一种性质:改变某一个权重或偏置很小的值,整个神经网络的输出也应该改变很小(数学上,函数连续且可导)。否则这种学习就会非常困难。

不幸的是,感知机组成的神经网络就不具有这种性质。很可能你只是靴微改变某一个权重的值,整个神经网络的输出却会发生质变:原来输出0,现在输出1.

碰到这个问题怎么办呢?前人因此引入了一种新的神经元类型:Sigmoid神经元。

不同于感知机的是,输入变量不仅可以取值0或1,还可以取值0和1之间的任何实数!输出值也不局限于0或1,而是sigmoid函数

sigmoid神经元其实可以看作感知机的平滑化

6神经网络结构

三层结构,输入层有28*28=784个节点,隐藏层节点数可以变化,输出层有10个节点,表示0~9,若识别数字为1,则输出结果为0100000000,若识别数字为9,则输出结果为0000000001.

下面说明一下各层的表示和各层的关系:(以15个隐藏层节点为例)

输入层:X=(x1,x2,x3…x784)

隐藏层:Y=(y1,y2,y3…y15)

输出层:O=(o1,o2,o3…o10)

两个权重:

输入层到隐藏层的权重:V=(V1,V2,V3…V784),Vj是一个列向量,表示输入层所有神经元通过Vj加权,得到隐藏层的第j个神经元

隐藏层到输出层的权重:W=(W1,W2,W3…W15),Wk是一个列向量,表示隐藏层的所有神经元通过Wk加权,得到输出层的第k个神经元

根据我们上面说到的单个神经元的刺激传入和刺激传出,相信到这里很多人应该已经得出下面的各层之间的关系了:

注意:上述公式还要加上偏移量

7误差反向传播算法

如何求得W和V呢,这里要用到一种算法,就是误差反向传播算法(Error Back Propagation Algorithm) ,简称BP 算法。

首先随机地初始化W和V的值,然后代入一些图片进行计算,得到一个输出,当然由于W和V参数不会刚好很完美,输出自然不会是像上文说的,刚好就是{1 0 0 0 0 0 0 0 0 0}这一类,例如{0.7 0 0 0.1 0.2 0 0 0 0 0.1}.所以存在误差,根据这个误差就可以反过来修正W和V的值,修正后的W和V可以使输出更加的靠近于理想的输出,这就是所谓的“误差反向传播”的意思,修正一次之后,再代入其他一些图片,输出离理想输出又靠近了一点,我们又继续计算误差,然后修正W和V的值,就这样经过很多次的迭代计算,最终多次修正得到了比较完美的W和V矩阵,它可以使得输出非常靠近于理想的输出,至此我们的工作完成度才是100%了。

逆向传播算法的数学推导.....(No figures are omitted below)

推导结果:

d表示正确标签,o表示训练输出,y表示隐藏层的值。另外为了使权值调整更加灵活加入一个放缩倍数η(权值学习率)使得,

改变η的大小即可改变每一次调节的幅度,η大的话调节更快,小则调节慢,但是过大容易导致振荡。

8手写体数字识别算法实现步骤

1)      读入训练数据:训练样本、训练样本标签

2)      神经网络配置:参数的初始化(各层节点数、各层权值学习率、各层偏移量等)

3)      激活函数实现:sigmoid函数

4)      训练:60000个数据量的训练集;前向过程,后向过程(反馈调整各层权重和偏移量)

5)      测试:10000个数据量的测试集,获取正确率

9程序结果分析

主要参数:

输入层节点数,隐藏层节点数,输出层节点数,输入层权矩阵,隐藏层权矩阵,输入层偏置向量,隐藏层偏置向量,输入层权值学习率,隐藏层学权值习率

不可变参数:

输入层节点数(784),输出层节点数(10)

随机参数(随机数生成):

输入层权矩阵,隐藏层权矩阵,输入层偏置向量,隐藏层偏置向量

可控参数:

隐藏层节点数,输入层权值学习率,隐藏层学权值习率

隐藏层节点数对算法的影响:

参数表1


隐藏层节点数


10


输入层权值学习率


0.3


隐藏层学权值习率


0.3

结果1(20s)


0


1


2


3


4


5


6


7


8


9


测试集


980


1135


1032


1010


982


892


958


1028


974


1009


正确数


946


1111


860


906


915


754


887


896


800


903


正确率


96.5%


97.9%


83.3%


89.7%


93.2%


84.5%


92.6%


87.2%


82.1%


89.5%



89.78%

参数表2


隐藏层节点数


15


输入层权值学习率


0.3


隐藏层学权值习率


0.3

结果2(27s)


0


1


2


3


4


5


6


7


8


9


测试集


980


1135


1032


1010


982


892


958


1028


974


1009


正确数


948


1117


873


909


872


751


929


898


867


950


正确率


96.7%


98.4%


84.6%


90.0%


88.8%


84.2%


97.0%


87.4%


89.0%


94.2%



91.14%

参数表3


隐藏层节点数


30


输入层权值学习率


0.3


隐藏层学权值习率


0.3

结果3(46s)


0


1


2


3


4


5


6


7


8


9


测试集


980


1135


1032


1010


982


892


958


1028


974


1009


正确数


953


1124


913


963


931


796


919


919


892


952


正确率


97.2%


99.0%


88.5%


95.3%


94.8%


89.2%


95.9%


89.4%


91.6%


94.4%



93.62%

当隐藏层节点数增到100时,算法跑了137s,总正确率为94.94%

算法正确率收敛于95%……算法遇到了瓶颈......

权值学习率对算法的影响:

 

输入节点784,隐藏层节点10,输出层节点10

令输入层和隐藏层权值学习率共用一个参数的条件下,权值学习率n取值范围为[0.1,1]算法正确率最高。

算法手写体数字识别

正确率较高的数字是1、0

正确率较低的数字是2、5

谢 谢!     未 完 待 续 ...

时间: 2024-12-23 13:37:53

BP神经网络(手写数字识别)的相关文章

基于Numpy的神经网络+手写数字识别

基于Numpy的神经网络+手写数字识别 本文代码来自Tariq Rashid所著<Python神经网络编程> 代码分为三个部分,框架如下所示: # neural network class definition class neuralNetwork: # initialise the neural network def __init__(): pass # train the neural network def train(): pass # query the neural netwo

神经网络手写数字识别

聊了几天理论,是该弄一个 Hello World 了,在人工智能领域,或者说深度学习领域,Hello World 程序就是手写数字识别,今天我们就来看看手写数字识别的程序怎么写.不愿意看代码吗,那我就说一说这段代码干了点什么:先通过 keras 内置的数据集下载测试数据,是 60000 长手写图片的训练集和 10000 张测试集,随后定义了一个神经网络的模型,设置网络中的层参数,随后配置训练网络的参数,包括损失函数和评测模型,设置迭代次数,启动训练网络,最后将测试数据喂给网络,得出训练效果是否有

使用cuda加速卷积神经网络-手写数字识别准确率99.7%

源码和运行结果 cuda:https://github.com/zhxfl/cuCNN-I C语言版本参考自:http://eric-yuan.me/ 针对著名手写数字识别的库mnist,准确率是99.7%,在几分钟内,CNN的训练就可以达到99.60%左右的准确率. 参数配置 网络的配置使用Config.txt进行配置##之间是注释,代码会自动过滤掉,其他格式参考如下: #Comment# #NON_LINEARITY CAN = NL_SIGMOID , NL_TANH , NL_RELU#

利用手写数字识别项目详细描述BP深度神经网络的权重学习

本篇文章是针对学习<深度学习入门>(由日本学者斋藤康毅所著陆羽杰所译)中关于神经网络的学习一章来总结归纳一些收获. 本书提出神经网络的学习分四步:1.mini-batch 2.计算梯度 3.更新参数 4.重复前面步骤 1.从识别手写数字项目学习神经网络 所谓“从数据中学习”是指 可以由数据#自动决定权重#.当解决较为简单的问题,使用简单的神经网络时,网络里的权重可以人为的手动设置,去提取输入信息中特定的特征.但是在实际的神经网络中,参数往往是成千上万,甚至可能上亿的权重,这个时候人为手动设置是

C#中调用Matlab人工神经网络算法实现手写数字识别

手写数字识别实现 设计技术参数:通过由数字构成的图像,自动实现几个不同数字的识别,设计识别方法,有较高的识别率 关键字:二值化  投影  矩阵  目标定位  Matlab 手写数字图像识别简介: 手写阿拉伯数字识别是图像内容识别中较为简单的一个应用领域,原因有被识别的模式数较少(只有0到9,10个阿拉伯数字).阿拉伯数字笔画少并且简单等.手写阿拉伯数字的识别采用的方法相对于人脸识别.汉字识别等应用领域来说可以采用更为灵活的方法,例如基于规则的方法.基于有限状态自动机的方法.基于统计的方法和基于神

第二节,TensorFlow 使用前馈神经网络实现手写数字识别

一 感知器      感知器学习笔记:https://blog.csdn.net/liyuanbhu/article/details/51622695      感知器(Perceptron)是二分类的线性分类模型,其输入为实例的特征向量,输出为实例的类别,取+1和-1.这种算法的局限性很大: 只能将数据分为 2 类 数据必须是线性可分的 虽然有这些局限,但是感知器是 ANN 和 SVM 的基础,理解了感知器的原理,对学习ANN 和 SVM 会有帮助,所以还是值得花些时间的. 感知器可以表示为

Pytorch入门实战一:LeNet神经网络实现 MNIST手写数字识别

记得第一次接触手写数字识别数据集还在学习TensorFlow,各种sess.run(),头都绕晕了.自从接触pytorch以来,一直想写点什么.曾经在2017年5月,Andrej Karpathy发表的一片Twitter,调侃道:l've been using PyTorch a few months now, l've never felt better, l've more energy.My skin is clearer. My eye sight has improved.确实,使用p

C++使用matlab卷积神经网络库MatConvNet来进行手写数字识别

环境:WIN10(64 bit)+VS2010(64 bit)+Matlab2015b(64 bit) 关于MatConvNet的介绍参考:http://www.vlfeat.org/matconvnet/ Github下载地址为:https://github.com/vlfeat/matconvnet/ 我们的目的是将MatConvNet自带的手写数字识别DEMO移植到一个简单的WIN32 DEMO中使用,主要过程有以下几个步骤: (1)配置MatConvNet,然后将手写数字识别DEMO编译

keras入门实战:手写数字识别

近些年由于理论知识的硬件的快速发展,使得深度学习达到了空前的火热.深度学习已经在很多方面都成功得到了应用,尤其是在图像识别和分类领域,机器识别图像的能力甚至超过了人类. 本文用深度学习Python库Keras实现深度学习入门教程mnist手写数字识别.mnist手写数字识别是机器学习和深度学习领域的"hello world",MNIST数据集是手写数字的数据集合,训练集规模为60000,测试集为10000. 本文的内容包括: 如何用Keras加载MNIST数据集 对于MNIST问题如何

Tensorflow实践 mnist手写数字识别

minst数据集                                         tensorflow的文档中就自带了mnist手写数字识别的例子,是一个很经典也比较简单的入门tensorflow的例子,非常值得自己动手亲自实践一下.由于我用的不是tensorflow中自带的mnist数据集,而是从kaggle的网站下载下来的,数据集有些不太一样,所以直接按照tensorflow官方文档上的参数训练的话还是踩了一些坑,特此记录. 首先从kaggle网站下载mnist数据集,一份是