[转]哈夫曼树

  一、哈夫曼树的概念和定义

什么是哈夫曼树?

让我们先举一个例子。

判定树:

        在很多问题的处理过程中,需要进行大量的条件判断,这些判断结构的设计直接影响着程序的执行效率。例如,编制一个程序,将百分制转换成五个等级输出。大家可能认为这个程序很简单,并且很快就可以用下列形式编写出来:

if(score<60)
    cout<<"Bad"<<endl;
else if(score<70)
    cout<<"Pass"<<endl
else if(score<80)
    cout<<"General"<<endl;
else if(score<90)
    cout<<"Good"<<endl;
else
    cout<<"Very good!"<<endl;

  

若考虑上述程序所耗费的时间,就会发现该程序的缺陷。在实际中,学生成绩在五个等级上的分布是不均匀的。当学生百分制成绩的录入量很大时,上述判定过程需要反复调用,此时程序的执行效率将成为一个严重问题。

但在实际应用中,往往各个分数段的分布并不是均匀的。下面就是在一次考试中某门课程的各分数段的分布情况: 

下面我们就利用哈夫曼树寻找一棵最佳判定树,即总的比较次数最少的判定树。

第一种构造方式:

第二种构造方式:

这两种方式,显然后者的判定过程的效率要比前者高。在也没有别地判定过程比第二种方式的效率更高。

我们称判定过程最优的二叉树为哈夫曼树,又称最优二叉树

===================================================================================================

定义哈夫曼树之前先说明几个与哈夫曼树有关的概念:

路径: 树中一个结点到另一个结点之间的分支构成这两个结点之间的路径。

路径长度:路径上的分枝数目称作路径长度。

树的路径长度:从树根到每一个结点的路径长度之和。

结点的带权路径长度:在一棵树中,如果其结点上附带有一个权值,通常把该结点的路径长度与该结点上的权值

                                                              之积称为该结点的带权路径长度(weighted path length)

  什么是权值?( From 百度百科 )

     计算机领域中(数据结构

  权值就是定义的路径上面的值。可以这样理解为节点间的距离。通常指字符对应的二进制编码出现的概率。

  至于霍夫曼树中的权值可以理解为:权值大表明出现概率大!

  一个结点的权值实际上就是这个结点子树在整个树中所占的比例.

  abcd四个叶子结点的权值为7,5,2,4. 这个7,5,2,4是根据实际情况得到的,比如说从一段文本中统计出abcd四个字母出现的次数分别为7,5,2,4. 说a结点的权值为7,意思是说a结点在系统中占有7这个份量.实际上也可以化为百分比来表示,但反而麻烦,实际上是一样的.

树的带权路径长度:如果树中每个叶子上都带有一个权值,则把树中所有叶子的带权路径长度之和称为树的带

                                   权路径长度。

             设某二叉树有n个带权值的叶子结点,则该二叉树的带权路径长度记为:

                                  

公式中,Wk为第k个叶子结点的权值;Lk为该结点的路径长度。

示例:

======================================================================================================

一般来说,用n(n>0)个带权值的叶子来构造二叉树,限定二叉树中除了这n个叶子外只能出现度为2的结点。

那么符合这样条件的二叉树往往可构造出许多颗,

其中带权路径长度最小的二叉树就称为哈夫曼树或最优二叉树

===============================================================================

  二、哈夫曼树的构造

根据哈弗曼树的定义,一棵二叉树要使其WPL值最小,必须使权值越大的叶子结点越靠近根结点,而权值越小的叶子结点

越远离根结点。

哈弗曼依据这一特点提出了一种构造最优二叉树的方法,其基本思想如下:

下面演示了用Huffman算法构造一棵Huffman树的过程:

三、哈夫曼树的在编码中的应用

在电文传输中,需要将电文中出现的每个字符进行二进制编码。在设计编码时需要遵守两个原则:

(1)发送方传输的二进制编码,到接收方解码后必须具有唯一性,即解码结果与发送方发送的电文完全一样;

(2)发送的二进制编码尽可能地短。下面我们介绍两种编码的方式。

1. 等长编码

            这种编码方式的特点是每个字符的编码长度相同(编码长度就是每个编码所含的二进制位数)。假设字符集只含有4个字符A,B,C,D,用二进制两位表示的编码分别为00,01,10,11。若现在有一段电文为:ABACCDA,则应发送二进制序列:00010010101100,总长度为14位。当接收方接收到这段电文后,将按两位一段进行译码。这种编码的特点是译码简单且具有唯一性,但编码长度并不是最短的。

2. 不等长编码

            在传送电文时,为了使其二进制位数尽可能地少,可以将每个字符的编码设计为不等长的,使用频度较高的字符分配一个相对比较短的编码,使用频度较低的字符分配一个比较长的编码。例如,可以为A,B,C,D四个字符分别分配0,00,1,01,并可将上述电文用二进制序列:000011010发送,其长度只有9个二进制位,但随之带来了一个问题,接收方接到这段电文后无法进行译码,因为无法断定前面4个0是4个A,1个B、2个A,还是2个B,即译码不唯一,因此这种编码方法不可使用。

因此,为了设计长短不等的编码,以便减少电文的总长,还必须考虑编码的唯一性,即在建立不等长编码时必须使任何一个字符的编码都不是另一个字符的前缀,这宗编码称为前缀编码(prefix  code)

(1)利用字符集中每个字符的使用频率作为权值构造一个哈夫曼树;

(2)从根结点开始,为到每个叶子结点路径上的左分支赋予0,右分支赋予1,并从根到叶子方向形成该叶子结点的编码

例题:

假设一个文本文件TFile中只包含7个字符{A,B,C,D,E,F,G},这7个字符在文本中出现的次数为{5,24,7,17,34,5,13}

利用哈夫曼树可以为文件TFile构造出符合前缀编码要求的不等长编码

具体做法:

1. 将TFile中7个字符都作为叶子结点,每个字符出现次数作为该叶子结点的权值

2. 规定哈夫曼树中所有左分支表示字符0,所有右分支表示字符1,将依次从根结点到每个叶子结点所经过的分支的二进制位的序列作为该

结点对应的字符编码

3. 由于从根结点到任何一个叶子结点都不可能经过其他叶子,这种编码一定是前缀编码,哈夫曼树的带权路径长度正好是文件TFile编码

的总长度

通过哈夫曼树来构造的编码称为哈弗曼编码(huffman code)

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;

#define N 10         // 带编码字符的个数,即树中叶结点的最大个数
#define M (2*N-1)    // 树中总的结点数目

class HTNode{        // 树中结点的结构
public:
	unsigned int weight;
	unsigned int parent,lchild,rchild;
};                    

class HTCode{
public:
	char data;      // 待编码的字符
	int weight;     // 字符的权值
	char code[N];   // 字符的编码
};

void Init(HTCode hc[], int *n){
// 初始化,读入待编码字符的个数n,从键盘输入n个字符和n个权值
	int i;
	printf("input n = ");
	scanf("%d",&(*n));

	printf("\ninput %d character\n",*n);

	fflush(stdin);
	for(i=1; i<=*n; ++i)
		scanf("%c",&hc[i].data);

	printf("\ninput %d weight\n",*n);

	for(i=1; i<=*n; ++i)
		scanf("%d",&(hc[i].weight) );
	fflush(stdin);
}//

void Select(HTNode ht[], int k, int *s1, int *s2){
// ht[1...k]中选择parent为0,并且weight最小的两个结点,其序号由指针变量s1,s2指示
	int i;
	for(i=1; i<=k && ht[i].parent != 0; ++i){
		; ;
	}
	*s1 = i;

	for(i=1; i<=k; ++i){
		if(ht[i].parent==0 && ht[i].weight<ht[*s1].weight)
			*s1 = i;
	}

	for(i=1; i<=k; ++i){
		if(ht[i].parent==0 && i!=*s1)
			break;
	}
	*s2 = i;

	for(i=1; i<=k; ++i){
		if(ht[i].parent==0 && i!=*s1 && ht[i].weight<ht[*s2].weight)
			*s2 = i;
	}
}

void HuffmanCoding(HTNode ht[],HTCode hc[],int n){
// 构造Huffman树ht,并求出n个字符的编码
	char cd[N];
	int i,j,m,c,f,s1,s2,start;
	m = 2*n-1;

	for(i=1; i<=m; ++i){
		if(i <= n)
			ht[i].weight = hc[i].weight;
		else
			ht[i].parent = 0;
		ht[i].parent = ht[i].lchild = ht[i].rchild = 0;
	}

	for(i=n+1; i<=m; ++i){
		Select(ht, i-1, &s1, &s2);
		ht[s1].parent = i;
		ht[s2].parent = i;
		ht[i].lchild = s1;
		ht[i].rchild = s2;
		ht[i].weight = ht[s1].weight+ht[s2].weight;
	}

	cd[n-1] = ‘\0‘;

	for(i=1; i<=n; ++i){
		start = n-1;
		for(c=i,f=ht[i].parent; f; c=f,f=ht[f].parent){
			if(ht[f].lchild == c)
				cd[--start] = ‘0‘;
			else
				cd[--start] = ‘1‘;
		}
		strcpy(hc[i].code, &cd[start]);
	}
}

int main()
{
	int i,m,n,w[N+1];
	HTNode ht[M+1];
	HTCode hc[N+1];
	Init(hc, &n);     // 初始化
 	HuffmanCoding(ht,hc,n);   // 构造Huffman树,并形成字符的编码

	for(i=1; i<=n; ++i)
		printf("\n%c---%s",hc[i].data,hc[i].code);
	printf("\n");

	return 0;
}

  

时间: 2024-10-13 17:49:22

[转]哈夫曼树的相关文章

由二叉树构造赫夫曼树

赫夫曼树: 假设有n个权值{w1,w2,w3....},试构造一棵具有n个叶子节点的二叉树,每个叶子节点带权为wi,则其中带权路径长度最小的二叉树称为最优二叉树或者叫赫夫曼树. 构造赫夫曼树: 假设有n个权值,则构造出的赫夫曼树有n个叶子节点,n个权值分别设置为w1,w2,....wn,则赫夫曼树的构造规则为: 1.将w1,w2...看成是有n棵树的森林: 2.在森林中选择两个根节点的权值最小的树合并,作为一棵新树的左右子树,且新树的根节点权值为其左右子树根节点权值之和: 3.从森林中删除选取的

php 二叉树 与赫夫曼树

在学习图之前,中间休息了两天,感觉二叉树需要消化一下.所以中间去温习了下sql,推荐一本工具书<程序员的SQL金典>看名字不像一本好书,但是作为一个不错的SQL工具书还是可以小小备忘一下.涵盖内容不详细但是挺广,覆盖多种主流数据库 言归正传,以前知道折半查找,二叉树的概念也是感觉挺有意思,二叉树的实现有一个案例很不错,代码如下 class BiNode{ public $data; public $lchild; public $rchild; public function __constr

哈夫曼树与哈夫曼编码

哈夫曼树与哈夫曼编码 术语: i)路径和路径长度 在一棵树中,从一个结点往下可以达到的孩子或孙子结点之间的通路,称为路径. 路径中分支的数目称为路径长度.若规定根结点的层数为1,则从根结点到第L层结点的路径长度为L-1. ii)结点的权及带权路径长度 若对树中的每个结点赋给一个有着某种含义的数值,则这个数值称为该结点的权. 结点的带权路径长度为:从根结点到该结点之间的路径长度与该结点的权的乘积. iii)树的带权路径长度 树的带权路径长度:所有叶子结点的带权路径长度之和,记为WPL. 先了解一下

数据结构之哈夫曼树

#include <iostream> #include <iomanip> #include <string> using namespace std; typedef struct { string name; int weight; int parent, lchild, rchild; int visited; //设置visited选项来表示每次查找最小权值后的删除,0代表未删除,1表示删除 }HTNode,*HuffmanTree; int Min(Huff

Huffman tree(赫夫曼树、霍夫曼树、哈夫曼树、最优二叉树)

flyfish 2015-8-1 Huffman tree因为翻译不同所以有其他的名字 赫夫曼树.霍夫曼树.哈夫曼树 定义引用自严蔚敏<数据结构> 路径 从树中一个结点到另一个结点之间的分支构成两个结点之间的路径. 路径长度 路径上的分支数目称作路径长度. 树的路径长度 树的路径长度就是从根节点到每一结点的路径长度之和. 结点的带权路径长度 结点的带权路径长度就是从该结点到根节点之间的路径长度与结点上权的乘积. 树的带权路径长度 树的带权路径长度就是树中所有叶子结点的带权路径长度之和,通常记做

数据结构之哈夫曼树(java实现)-(五)

所谓哈夫曼树就是要求最小加权路径长度,这是什么意思呢?简而言之,就是要所有的节点对应的路径长度(高度-1)乘以该节点的权值,然后保证这些结果之和最小. 哈夫曼树最常用的应用就是解决编码问题.一般我们用的ASCII是固定长度的编码,对于那些常用的字符,使用很长的长度就显得略为浪费空间了. 下面以一个实例来构建一颗哈夫曼编码树. 设字符集S={A,B,C,D,E,F},字符出现的频率W={2,3,5,7,9,12},对字符集进行哈夫曼编码 (1)以频率为树的节点值,构建6个树节点,保存在一个数据集合

《数据结构复习笔记》--哈夫曼树,哈夫曼编码

先来了解一下哈夫曼树. 带权路径长度(WPL):设二叉树有n个叶子结点,每个叶子结点带有权值 wk,从根结点到每个叶子结点的长度为 lk,则每个叶子结点的带权路径长度之和就是: 最优二叉树或哈夫曼树: WPL最小的二叉树. [例]有五个叶子结点,它们的权值为{1,2,3,4,5},用此权值序列可以构造出形状不同的多个二叉树. 其中结果wpl最小值的是:33=(1+2)*3+(3)*2+(4+5)*2: 哈夫曼树的构造: 每次把权值最小的两棵二叉树合并, 代码: typedef struct Tr

哈夫曼树学习笔记

既然我们要学习赫夫曼树,那么我们首先就要知道什么叫赫夫曼树. 那么什么叫赫夫曼树呢? 一.什么叫赫夫曼树? 书上说:“赫夫曼(Huffman)树又称最优树,是一类带权路径长度最短的树,但是我们仅学习最优二叉树.” 看到这个还是不明白什么意思,因此在学习之前我们要结合这个图了解几个基本概念. 路    径:由一结点到另一结点间的分支所构成.如:a->b a->b->e 路径长度:路径上的分支数目,如:a→e的路径长度=2  a->c的路径长度=1 树的路径长度:从树根到每一结点的路径

hdu5884 Sort(二分+k叉哈夫曼树)

题目链接:hdu5884 Sort 题意:n个有序序列的归并排序.每次可以选择不超过k个序列进行合并,合并代价为这些序列的长度和.总的合并代价不能超过T, 问k最小是多少. 题解:先二分k,然后在k给定的情况下,构造k叉哈夫曼树.O(nlogn)的做法:先对所有数排序,另外一个队列维护合并后的值,取值时从两个序列前端取小的即可. 注:如果(n-1)%(k-1)!=0,那么就要增加(k-1-(n-1)%(k-1))个权值为0的叶子节点作虚拟点. 1 #include<cstdio> 2 #inc