for iter = 1:num_iters %梯度下降 用户向量 for i = 1:m %返回有0有1 是逻辑值 ratedIndex1 = R_training(i,:)~=0 ; %U(i,:) * V‘ 第i个用户分别对每个电影的评分 %sumVec1 第i个用户分别对每个电影的评分 减去真实值 sumVec1 = ratedIndex1 .* (U(i,:) * V‘ - R_training(i,:)); product1 = sumVec1 * V; derivative1 = product1 + lambda_u * U(i,:); old_U(i,:) = U(i,:) - theta * derivative1; end %梯度下降 电影向量 for j = 1:n ratedIndex2 = R_training(:,j)~=0; sumVec2 = ratedIndex2 .* (U * V(j,:)‘ - R_training(:,j)); product2 = sumVec2‘ * U; derivative2 = product2 + lambda_v * V(j,:); old_V(j,:) = V(j,:) - theta * derivative2; end U = old_U; V = old_V; RMSE(i,1) = CompRMSE(train_vec,U,V); RMSE(i,2) = CompRMSE(probe_vec,U,V); end
时间: 2024-10-05 05:28:59