concurrent.futures模块

concurrent.futures模块的相关文章

Python并发编程之线程池/进程池--concurrent.futures模块

h2 { color: #fff; background-color: #f7af0d; padding: 3px; margin: 10px 0px } 一.关于concurrent.futures模块 Python标准库为我们提供了threading和multiprocessing模块编写相应的多线程/多进程代码,但是当项目达到一定的规模,频繁创建/销毁进程或者线程是非常消耗资源的,这个时候我们就要编写自己的线程池/进程池,以空间换时间.但从Python3.2开始,标准库为我们提供了conc

35、concurrent.futures模块与协程

concurrent.futures  -Launching parallel tasks    concurrent.futures模块同时提供了进程池和线程池,它是将来的使用趋势,同样我们之前学习的进程池Pool和threadpool模块也可以使用. 对进程池疑惑的可以参阅:32进程池与回调函数http://www.cnblogs.com/liluning/p/7445457.html 对threadpool模块疑惑的可以看我闲暇时写的一段代码:(因为本人也不了解这个模块,代码里写的也是自己

使用concurrent.futures模块并发,实现进程池、线程池

一.关于concurrent.futures模块 Python标准库为我们提供了threading和multiprocessing模块编写相应的异步多线程/多进程代码.从Python3.2开始,标准库为我们提供了concurrent.futures模块,它提供了ThreadPoolExecutor和ProcessPoolExecutor两个类ThreadPoolExecutor和ProcessPoolExecutor继承了Executor,分别被用来创建线程池和进程池的代码.实现了对thread

concurrent.futures模块与协程

concurrent.futures  -Launching parallel tasks    concurrent.futures模块同时提供了进程池和线程池,它是将来的使用趋势,同样我们之前学习的进程池Pool和threadpool模块也可以使用. 对进程池疑惑的可以参阅:32进程池与回调函数http://www.cnblogs.com/liluning/p/7445457.html 对threadpool模块疑惑的可以看我闲暇时写的一段代码:(因为本人也不了解这个模块,代码里写的也是自己

python全栈开发基础【第二十六篇】(concurrent.futures模块、协程、Greenlet、Gevent)

注意 1.不能无限的开进程,不能无限的开线程最常用的就是开进程池,开线程池.其中回调函数非常重要回调函数其实可以作为一种编程思想,谁好了谁就去掉 2.只要你用并发,就会有锁的问题,但是你不能一直去自己加锁吧那么我们就用QUEUE,这样还解决了自动加锁的问题由Queue延伸出的一个点也非常重要的概念.以后写程序也会用到这个思想.就是生产者与消费者问题 一.Python标准模块--concurrent.futures(并发未来) concurent.future模块需要了解的 1.concurent

python | concurrent.futures模块提升数据处理速度

p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px ".PingFang SC"; color: #454545 } p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px "Helvetica Neue"; color: #454545; min-height: 14.0px } span.s1 { font: 12.0px "Helvetica Ne

python3 线程池-threadpool模块与concurrent.futures模块

一. 既然多线程可以缩短程序运行时间,那么,是不是线程数量越多越好呢? 显然,并不是,每一个线程的从生成到消亡也是需要时间和资源的,太多的线程会占用过多的系统资源(内存开销,cpu开销),而且生成太多的线程时间也是可观的,很可能会得不偿失,这里给出一个最佳线程数量的计算方式: 最佳线程数的获取: 1.通过用户慢慢递增来进行性能压测,观察QPS(即每秒的响应请求数,也即是最大吞吐能力.),响应时间 2.根据公式计算:服务器端最佳线程数量=((线程等待时间+线程cpu时间)/线程cpu时间) * c

创建进程池与线程池concurrent.futures模块的使用

一.进程池. 当并发的任务数量远远大于计算机所能承受的范围,即无法一次性开启过多的任务数量就应该考虑去 限制进程数或线程数,从而保证服务器不会因超载而瘫痪.这时候就出现了进程池和线程池. 二.concurrent.futures模块介绍 concurrent.futures模块提供了高度封装的异步调用接口 ThreadPoolExecutor:线程池,提供异步调用 ProcessPoolExecutor:进程池,提供异步调用 Both implement the same interface,

python并发模块之concurrent.futures(一)

Python3.2开始,标准库为我们提供了concurrent.futures模块,它提供了ThreadPoolExecutor和ProcessPoolExecutor两个类,实现了对threading和multiprocessing的进一步抽象,对编写线程池/进程池提供了直接的支持,他属于上层的封装,对于用户来说,不用在考虑那么多东西了. 官方参考资料:https://pythonhosted.org/futures/ 1.Executor Exectuor是基础模块,这是一个抽象类,其子类分