一图弄明白DFT、DTFT和DFS之间的关系

转自:https://www.cnblogs.com/BitArt/archive/2012/11/24/2786390.html

很多同学学习了数字信号处理之后,被里面的几个名词搞的晕头转向,比如DFT,DTFT,DFS,FFT,FT,FS等,FT和FS属于信号与系统课程的内容,是对连续时间信号的处理,这里就不过多讨论,只解释一下前四者的关系。

  首先说明一下,我不是数字信号处理专家,因此这里只站在学生的角度以最浅显易懂的性质来解释问题,而不涉及到任何公式运算。

  学过卷积,我们都知道有时域卷积定理和频域卷积定理,在这里只需要记住两点:1.在一个域的相乘等于另一个域的卷积;2.与脉冲函数的卷积,在每个脉冲的位置上将产生一个波形的镜像。(在任何一本信号与系统课本里,此两条性质有详细公式证明)

  下面,就用这两条性质来说明DFT,DTFT,DFS,FFT之间的联系:

  先看图片:

  首先来说图(1)和图(2),对于一个模拟信号,如图(1)所示,要分析它的频率成分,必须变换到频域,这是通过傅立叶变换即FT(Fourier Transform)得到的,于是有了模拟信号的频谱,如图(2);注意1:时域和频域都是连续的!

  但是,计算机只能处理数字信号,首先需要将原模拟信号在时域离散化,即在时域对其进行采样,采样脉冲序列如图(3)所示,该采样序列的频谱如图(4),可见它的频谱也是一系列的脉冲。所谓时域采样,就是在时域对信号进行相乘,(1)×(3)后可以得到离散时间信号x[n],如图(5)所示;由前面的性质1,时域的相乘相当于频域的卷积,那么,图(2)与图(4)进行卷积,根据前面的性质2知,会在各个脉冲点处出现镜像,于是得到图(6),它就是图(5)所示离散时间信号x[n]的DTFT(Discrete time Fourier Transform),即离散时间傅立叶变换,这里强调的是“离散时间”四个字。注意2:此时时域是离散的,而频域依然是连续的。

  经过上面两个步骤,我们得到的信号依然不能被计算机处理,因为频域既连续,又周期。我们自然就想到,既然时域可以采样,为什么频域不能采样呢?这样不就时域与频域都离散化了吗?没错,接下来对频域在进行采样,频域采样信号的频谱如图(8)所示,它的时域波形如图(7)。现在我们进行频域采样,即频域相乘,图(6)×图(8)得到图(10),那么根据性质1,这次是频域相乘,时域卷积了吧,图(5)和图(7)卷积得到图(9),不出所料的,镜像会呈周期性出现在各个脉冲点处。我们取图(10)周期序列的主值区间,并记为X(k),它就是序列x[n]的DFT(Discrete Fourier Transform),即离散傅立叶变换。可见,DFT只是为了计算机处理方便,在频率域对DTFT进行的采样并截取主值而已。有人可能疑惑,对图(10)进行IDFT,回到时域即图(9),它与原离散信号图(5)所示的x[n]不同呀,它是x[n]的周期性延拓!没错,因此你去查找一个IDFT的定义式,是不是对n的取值区间进行限制了呢?这一限制的含义就是,取该周期延拓序列的主值区间,即可还原x[n]!

  FFT呢?FFT的提出完全是为了快速计算DFT而已,它的本质就是DFT!我们常用的信号处理软件MATLAB或者DSP软件包中,包含的算法都是FFT而非DFT。

  DFS,是针对时域周期信号提出的,如果对图(9)所示周期延拓信号进行DFS,就会得到图(10),只要截取其主值区间,则与DFT是完全的一一对应的精确关系。这点对照DFS和DFT的定义式也可以轻易的看出。因此DFS与DFT的本质是一样的,只不过描述的方法不同而已。

  不知道经过上面的解释,您是否明白各种T的关系了呢?如果您不是算法设计者,其实只要懂得如何使用FFT分析频谱即可,博主近期会更新一篇文章,专门介绍如何利用FFT分析简单信号的频谱。

  其实个人认为,纠结了这么多,就是为了打破现实模拟世界与计算机数字世界的界限呀!

原文地址:https://www.cnblogs.com/YiYA-blog/p/10213909.html

时间: 2024-10-12 09:05:41

一图弄明白DFT、DTFT和DFS之间的关系的相关文章

一张图弄明白开源协议-GPL、BSD、MIT、Mozilla、Apache和LGPL 之间的区别

导读 在开源软件中经常看到各种协议说明,GPL.BSD.MIT.Mozilla.Apache和LGPL. - 这些协议之间的有什么区别 - 如何选择合适的开源协议 请看下文,特作记录一篇,以供后续查看 参考: 阮一峰的网络日志

关于java中是引用传递还是值传递的问题!!!经常在笔试中遇到,今天终于弄明白了!

关于JAVA中参数传递问题有两种,一种是按值传递(如果是基本类型),另一种是按引用传递(如果是對象).首先以两个例子开始:1)public class Test2 { public static void main (String [] args) { StringBuffer a = new StringBuffer ("A"); StringBuffer b = new StringBuffer ("B"); operate (a,b); System.out.

图的创建和遍历(BFS/DFS)

图的表示方法主要有邻接矩阵和邻接表.其中邻接表最为常用,因此这里便以邻接表为例介绍一下图的创建及遍历方法. 创建图用到的结构有两种:顶点及弧 struct ArcNode { int vertexIndex; //该弧指向的顶点位置 struct ArcNode* next; //指向下一个弧 InfoType info; //该弧的相关信息,如权重等 }; struct Vertex { VertexType data; //顶点信息 ArcNode* firstArc; //指向第一条依附该

图的遍历(bfs 和dfs)

BFS的思想: 从一个图的某一个顶点V0出发,首先访问和V0相邻的且未被访问过的顶点V1.V2.……Vn,然后依次访问与V1.V2……Vn相邻且未被访问的顶点.如此继续,找到所要找的顶点或者遍历完整个图. 由此可以看出,用BFS进行搜索所搜索的顶点都是按深度进行扩展的,先找到到V0距离为1的所有顶点,然后找到距离V0为2的顶点……所以BFS所搜索到的都是最短的路径. 由于要将距离V0为d(d>0)的且未被方位的点都记录起来,我们采用队列这种数据结构.队列的特点是先进先出(FIFO),从某个顶点出

弄明白CMS和G1,就靠这一篇了

目录 1 CMS收集器 安全点(Safepoint) 安全区域 2 G1收集器 卡表(Card Table) 3 总结 4 参考 在开始介绍CMS和G1前,我们可以剧透几点: 根据不同分代的特点,收集器可能不同.有些收集器可以同时用于新生代和老年代,而有些时候,则需要分别为新生代或老年代选用合适的收集器.一般来说,新生代收集器的收集频率较高,应选用性能高效的收集器:而老年代收集器收集次数相对较少,对空间较为敏感,应当避免选择基于复制算法的收集器. 在垃圾收集执行的时刻,应用程序需要暂停运行. 可

深入Linux内核架构 - 内核之中数据结构之间的关系图 & 设备驱动程序(转)

内核之中数据结构之间的关系图 设备驱动程序

一张图理解prototype、proto和constructor的三角关系

× 目录 [1]图示 [2]概念 [3]说明[4]总结 前面的话 javascript里的关系又多又乱.作用域链是一种单向的链式关系,还算简单清晰:this机制的调用关系,稍微有些复杂:而关于原型,则是prototype.proto和constructor的三角关系.本文先用一张图开宗明义,然后详细解释原型的三角关系 图示 概念 上图中的复杂关系,实际上来源就两行代码 function Foo(){}; var f1 = new Foo; [构造函数] 用来初始化新创建的对象的函数是构造函数.在

java 类与类之间的关系 及uml图

类与接口之间的关系 : 继承 类与类之间的关系 :继承关系  包含关系 类与对象之间的关系 : 实例 UML 类图中类与类之间的关系: 泛化关系(generalization) 关联关系(association) 聚合关系(aggregation) 合成关系 (compostion) 依赖关系 (dependency) 1.泛化(Generalization)[泛化]表示类与类之间的继承关系,接口与接口之间的继承关系,或类对接口的实现关系.一般化的关系是从子类指向父类的,与继承或实现的方法相反.

转:TCP/IP详解--举例明白发送/接收缓冲区、滑动窗口协议之间的关系

原文地址:http://blog.csdn.net/yusiguyuan/article/details/21439633#1536434-tsina-1-74921-66a1f5d8f89e9ad52626f6f40fdeadaa  TCP/IP详解--举例明白发送/接收缓冲区.滑动窗口协议之间的关系. 一个例子明白发送缓冲区.接受缓冲区.滑动窗口协议之间的关系. 在上面的几篇文章中简单介绍了上述几个概念在TCP网络编程中的关系,也对应了几个基本socket系统调用的几个行为,这里再列举一个例