电容有什么作用?为什么cpu电源引脚都并联一个电容?

随笔- 17  文章- 1  评论- 1

正文:

参考资料:http://blog.sina.com.cn/s/blog_7880d3350101dsf9.html;http://www.dzsc.com/data/2015-9-16/108785.html;

http://www.21ic.com/jichuzhishi/analog/questions/2013-05-16/181478.html;

电容主要有以下四种作用,分别是储能、滤波、旁路、去耦:

               

                          

1.储能:类似屋顶水箱,当我们在用水高峰,自来水管供水不足的时候,水箱此时就发挥重要作用,满足我们用水要求。同理,当后级负载需要较大电流时,电容本来是储能介质,此时也充当电源角色为负载提供电流;

2.滤波:个人认为这所指的滤波:滤除电源输出电压的纹波。利用电容储能作用,原理是:整流电压高于电容电压时电容充电,当整流电压低于电容电压时电容放电;在充放电的过程中,使输出电压基本稳定。常用的场景有AC/DC整流后级、DC/DC SW引脚都会并联多个大电容。

3.旁路:以IC为研究对象的话,旁路就是将前级电源携带的高频噪声滤除。由于DC/DC通过控制MOS管通断来达到稳定电压效果,因此输出电源会携带较大的开关噪声。因为旁路电容滤除的是高频噪声,所以电容的容值会比较小,一般是10nF、100nF等。

4.去耦:当数字电路的状态发生改变时,会在电源线上产生一个尖峰电流,形成瞬变的噪声电压,会影响前级的正常工作,这就是耦合。去藕电容就是起到一个电池的作用,满足驱动电路电流的变化,避免相互间的耦合干扰。所以,cpu的每个电源引脚处都并联个电容。一般单独引脚取100nF,IC的某块供电就取10uF,取值要相差两个数量级(100倍);

总结:个人认为,旁路、去耦都是一回事,只是滤除对象不同,都是利用电容“通交隔直”的特性,为噪声提供低阻抗泄放回路,减少噪声对直流信号的干扰。

原文地址:https://www.cnblogs.com/jacklong-yin/p/10193756.html

时间: 2024-10-18 00:42:06

电容有什么作用?为什么cpu电源引脚都并联一个电容?的相关文章

关于滤波电容、去耦电容、旁路电容作用

关于滤波电容.去耦电容.旁路电容作用 滤波电容用在电源整流电路中,用来滤除交流成分.使输出的直流更平滑. 去耦电容用在放大电路中不需要交流的地方,用来消除自激,使放大器稳定工作. 旁路电容用在有电阻连接时,接在电阻两端使交流信号顺利通过. 1.关于去耦电容蓄能作用的理解 1)去耦电容主要是去除高频如RF信号的干扰,干扰的进入方式是通过电磁辐射.而实际上,芯片附近的电容还有蓄能的作用,这是第二位的.你可以把总电源看作密云水库,我们大楼内的家家户户都需要供水,这时候,水不是直接来自于水库,那样距离太

FPGA的电源引脚

转:http://www.cnblogs.com/Hello-Walker/archive/2012/08/23/2651987.html 首先是看到FPGA在配置的时候有三种不同的电VCCINT .VCCIO VCCA,于是就查了下有什么不同: FPGA一般会有许多引脚,那它们都有什么用呢? VCCINT为施加于 FPGA 内核逻辑的电压,典型的电压为1.2 V.1.5 V.1.8 V.2.5 V和3V,电流可达12A(?) 专用引脚和用户引脚 FPGA引脚分为两类:专用引脚和用户自定义引脚

【从零开始自制CPU之学习篇04】电容

电解电容: 多数在1μF以上,直接用数字表示.如:4.7μF.100μF.220μF等等.这种电容的两极有正负之分,长脚是正极. 独石电容: 独石电容器是多层陶瓷电容器的别称, 简称MLCC 读数方法:把"色环表示法"用到电容上来:这又是一种巧妙的演绎!我们在一些瓷片电容上往往看到这样的标记:"103","104","473"等,这里,第三个数字(个位数字)并非通常理解的个位数,它和四色环电阻的第三环一样,告诉人们前两位数字后

当有多于64合乎逻辑的cpu时刻,Windows 下一个Oracle db 实例启动(startup)什么时候会hang(待定)

Bug 9772171 - Database startup hangs on Windows when machine has more than 64 cores [ID 9772171.8] 该文章已经说明:在11.2.0.2 已经fix(解决)该bug. 而如今11gR2版本号已经推出了11.2.0.4.而且11.2.0.4是终于的11gR2版本号. 所以我们推荐安装11.2.0.4 外加最新的psu 最新的psu能够 查询这个文章获得:Oracle Database, Networki

[转]PCB布线设计

原文链接:http://download.eeworld.com.cn/detail/%E5%B8%B8%E8%A7%81%E6%B3%BD1/8623 一.PCB布线设计1 在当今激烈竞争的电池供电市场中,由于成本指标限制,设计人员常常使用双面板.尽管多层板(4层.6层及8层)方案在尺寸.噪声和性能方面具有明显优势,成本压力却促使工程师们重新考虑其布线策略,采用双面板.在本文中,我们将讨论自动布线功能的正确使用和错误使用,有无地平面时电流回路的设计策略,以及对双面板元件布局的建议. 1.1 自

蓝牙Bluez的编程实现

蓝牙的各个协议栈的简介 2 1.1.蓝牙技术 2 1.1.蓝牙协议栈 2 1.2.蓝牙技术的特点 4 1.2.1.蓝牙协议栈体系结构 4 1.2.2.蓝牙协议栈低层模块 5 1.2.3.软件模块 5 1.3.蓝牙的一些Profile 6 2.Bluez和D-Bus 8 2.1.Bluez和D-Bus体系结构 8 2.2.D-Bus介绍 10 2.3.Bluez的安全接口 14 2.4.Bluez适配器接口 19 2.5.Bluez配对 19 2.6.Bluez绑定 20 3.Bluez编程实现 

互阻放大器的稳定工作及其评估

摘要:互阻放大器(TIA)通常用于将传感器(如:光电二极管)的输出电流转换成电压信号,因为,有些电路或仪器只能接受电压输入.将一个运算放大器的输出通过一个反馈电阻连接到反相输入,则可得到最简单的TIA.然而,即使如此简单的TIA电路也需要在噪声增益.失调电压.带宽和稳定性方面进行仔细权衡.显然,TIA的稳定性是确保工作正常.性能可靠的基础.本应用笔记介绍了评估稳定性的经验计算,并讨论了如何调整相位补偿反馈电容. 产生自激振荡的原因 图1至图3所示为基本的TIA电路,图1常用于双电源供电系统:图2

由多个电容组成的去耦旁路电路,电容怎么布局摆放,先大后小还是先小后大?

由多个电容组成的去耦旁路电路,电容怎么布局摆放,先大后小还是先小后大? PCB设计规范与指南, 电磁兼容 EMC, 高频高速PCB设计 by xfire 去耦旁路电磁兼容高速电路设计 对于噪声敏感的IC电路,为了达到更好的滤波效果,通常会选择使用多个不同容值的电容并联方式,以实现更宽的滤波频率,如在IC电源输入端用1μF.100nF和10nF并联可以实现更好的滤波效果.那现在问题来了,这几个不同规格的电容在PCB布局时该怎么摆,电源路径是先经大电容然后到小电容再进入IC,还是先经过小电容再经过大

关于去耦电容和旁路电容

旁路电容不是理论概念,而是一个经常使用的实用方法,在50 -- 60年代,这个词也就有它特有的含义,现在已不多用.电子管或者晶体管是需要偏置的,就是决定工作点的直流供电条件.例如电子管的栅极相对于阴极往往要求 加有负压,为了在一个直流电源下工作,就在阴极对地串接一个电阻,利用板流形成阴极的对地正电位,而栅极直流接地,这种偏置技术叫做“自偏”,但是对(交 流)信号而言,这同时又是一个负反馈,为了消除这个影响,就在这个电阻上并联一个足够大的点容,这就叫旁路电容.后来也有的资料把它引申使用于类似情况.