【转】B树、B-tree B+树、B*树

原文链接 http://www.linuxidc.com/Linux/2014-11/109103.htm

BST

即二叉搜索树:

1.所有非叶子结点至多拥有两个儿子(Left和Right);

2.所有结点存储一个关键字;

3.非叶子结点的左指针指向小于其关键字的子树,右指针指向大于其关键字的子树;

如:

B-树(B树)

是一种多路搜索树(并不是二叉的):

1.定义任意非叶子结点最多只有M个儿子;且M>2;

2.根结点的儿子数为[2, M];

3.除根结点以外的非叶子结点的儿子数为[M/2, M];

4.每个结点存放至少M/2-1(取上整)和至多M-1个关键字;(至少2个关键字)

5.非叶子结点的关键字个数=指向儿子的指针个数-1;

6.非叶子结点的关键字:K[1], K[2], …, K[M-1];且K[i] ;

7.非叶子结点的指针:P[1], P[2], …, P[M];其中P[1]指向关键字小于K[1]的子树,P[M]指向关键字大于K[M-1]的子树,其它P[i]指向关键字属于(K[i-1], K[i])的子树;

8.所有叶子结点位于同一层;

如:(M=3)

B-树的搜索,从根结点开始,对结点内的关键字(有序)序列进行二分查找,如果命中则结束,否则进入查询关键字所属范围的儿子结点;重复,直到所对应的儿子指针为空,或已经是叶子结点;

B-树的特性:

1.关键字集合分布在整颗树中;

2.任何一个关键字出现且只出现在一个结点中;

3.搜索有可能在非叶子结点结束;

4.其搜索性能等价于在关键字全集内做一次二分查找;

5.自动层次控制;

由于限制了除根结点以外的非叶子结点,至少含有M/2个儿子,确保了结点的至少利用率,其最底搜索性能为O(LogN)

B+树

B+树是B-树的变体,也是一种多路搜索树:

1.其定义基本与B-树同,除了:

2.非叶子结点的子树指针与关键字个数相同;

3.非叶子结点的子树指针P[i],指向关键字值属于[ K[i], K[i+1] )的子树(B-树是开区间);

5.为所有叶子结点增加一个链指针;

6.所有关键字都在叶子结点出现;

如:(M=3)

B+的搜索与B-树也基本相同,区别是B+树只有达到叶子结点才命中(B-树可以在非叶子结点命中),其性能也等价于在关键字全集做一次二分查找;

B+的特性:

1.所有关键字都出现在叶子结点的链表中(稠密索引),且链表中的关键字恰好是有序的;

2.不可能在非叶子结点命中;

3.非叶子结点相当于是叶子结点的索引(稀疏索引),叶子结点相当于是存储(关键字)数据的数据层;

4.更适合文件索引系统;

B+树比B-树的优势:

1 不同于B-树只适合随机检索,B+树同时支持随机检索和顺序检索,在实际中应用比较多。

2 为什么说B+树比B-树更适合实际应用中操作系统的文件索引和数据库索引?

1) B+树的磁盘读写代价更低

B+树的内部结点并没有指向关键字具体信息的指针。因此其内部结点相对B 树更小。如果把所有同一内部结点的关键字存放在同一盘块中,那么盘块所能容纳的关键字数量也越多。一次性读入内存中的需要查找的关键字也就越多。相对来说IO读写次数也就降低了。

举个例子,假设磁盘中的一个盘块容纳16bytes,而一个关键字2bytes,一个关键字具体信息指针2bytes。一棵9阶B-tree(一个结点最多8个关键字)的内部结点需要2个盘块。而B+树内部结点只需要1个盘快(全部关键字都在叶结点的缘故?)。当需要把内部结点读入内存中的时候,B-树就比B+树多一次盘块查找时间(在磁盘中就是盘片旋转的时间)。(其实可以这么理解B-tree B+的空间利用率的区别,假如内存有一段存储空间,如果存储B-tree的节点,假如可以存储10个,因为在b-tree的节点中可以发现,10个节点中最少有一般是指针,也就是这些空间可以索引10个key,假如存储b+树的节点,10个节点中都是索引,那么每一个索引是可以指向一个链表的)

2) B+树的查询效率更加稳定

由于非终结点并不是最终指向文件内容的结点,而只是叶子结点中关键字的索引。所以任何关键字的查找必须走一条从根结点到叶子结点的路。所有关键字查询的路径长度相同,导致每一个数据的查询效率相当。

3 B+树和B-树最大的不同点是:

1)B-树的关键字和记录是放在一起的,叶子节点可以看作外部节点,不包含任何信息;B+树的非叶子节点中只有关键字和指向下一个节点的索引,记录只放在叶子节点中。

2)在B-树中,越靠近根节点的记录查找时间越快,只要找到关键字即可确定记录的存在;而B+树中每个记录的查找时间基本是一样的,都需要从根节点走到叶子节点,而且在叶子节点中还要再比较关键字。从这个角度看B-树的性能好像要比B+树好,而在实际应用中却是B+树的性能要好些。因为B+树的非叶子节点不存放实际的数据,这样每个节点可容纳的元素个数比B-树多,树高比B-树小,这样带来的好处是减少磁盘访问次数。尽管B+树找到一个记录所需的比较次数要比B-树多,但是一次磁盘访问的时间相当于成百上千次内存比较的时间,因此实际中B+树的性能可能还会好些,而且B+树的叶子节点使用指针连接在一起,方便顺序遍历(例如查看一个目录下的所有文件,一个表中的所有记录等),这也是很多数据库和文件系统使用B+树的缘故。

B*树

是B+树的变体,在B+树的非根和非叶子结点再增加指向兄弟的指针;

B*树定义了非叶子结点关键字个数至少为(2/3)*M,即块的最低使用率为2/3(代替B+树的1/2);

B+树的分裂:当一个结点满时,分配一个新的结点,并将原结点中1/2的数据复制到新结点,最后在父结点中增加新结点的指针;B+树的分裂只影响原结点和父结点,而不会影响兄弟结点,所以它不需要指向兄弟的指针;

B*树的分裂:当一个结点满时,如果它的下一个兄弟结点未满,那么将一部分数据移到兄弟结点中,再在原结点插入关键字,最后修改父结点中兄弟结点的关键字(因为兄弟结点的关键字范围改变了);如果兄弟也满了,则在原结点与兄弟结点之间增加新结点,并各复制1/3的数据到新结点,最后在父结点增加新结点的指针;

所以,B*树分配新结点的概率比B+树要低,空间使用率更高;

小结

BST树:二叉搜索树,每个结点只存储一个关键字,等于则命中,小于走左结点,大于走右结点;

B-树(B树):多路搜索树,每个结点存储M/2到M个关键字,非叶子结点存储指向关键字范围的子结点;所有关键字在整颗树中出现,且只出现一次,非叶子结点可以命中;

B+树:在B-树基础上,为叶子结点增加链表指针,所有关键字都在叶子结点中出现,非叶子结点作为叶子结点的索引;B+树总是到叶子结点才命中;

B*树:在B+树基础上,为非叶子结点也增加链表指针,将结点的最低利用率从1/2提高到2/3;

本文永久更新链接地址http://www.linuxidc.com/Linux/2014-11/109103.htm

时间: 2024-11-05 14:46:09

【转】B树、B-tree B+树、B*树的相关文章

LeetCode:Same Tree - 判断两颗树是否相等

1.题目名称 Same Tree(判断两棵树是否相等) 2.题目地址 https://leetcode.com/problems/same-tree/ 3.题目内容 英文:Given two binary trees, write a function to check if they are equal or not. Two binary trees are considered equal if they are structurally identical and the nodes h

笛卡尔树cartesian tree

笛卡尔树cartesian tree 笛卡尔树是一种特定的二叉树数据结构,可由数列构造,在范围最值查询.范围top k查询(range top k queries)等问题上有广泛应用.它具有堆的有序性,中序遍历可以输出原数列.笛卡尔树结构由Vuillmin(1980)[1]在解决范围搜索的几何数据结构问题时提出.从数列中构造一棵笛卡尔树可以线性时间完成,需要采用基于栈的算法来找到在该数列中的所有最近小数. 定义 无相同元素的数列构造出的笛卡尔树具有下列性质: 结点一一对应于数列元素.即数列中的每

使用行为树(Behavior Tree)实现游戏AI

原地址:http://blog.csdn.net/akara/article/details/6084786 [原创]使用行为树(Behavior Tree)实现游戏AIby AKara 2010-12-09 @ http://blog.csdn.net/akara @ akarachen(at)gmail.com @weibo.com/akaras 谈到游戏AI,很明显智能体拥有的知识条目越多,便显得更智能,但维护庞大数量的知识条目是个噩梦:使用有限状态机(FSM),分层有限状态机(HFSM)

使用行为树(Behavior Tree)实现网游奖励掉落系统

原地址:http://blog.csdn.net/akara/article/details/6165421 [原创]使用行为树(Behavior Tree)实现网游奖励掉落系统by AKara 2011-01-24 @ http://blog.csdn.net/akara @ akarachen(at)gmail.com @weibo.com/akaras 奖励/掉落系统,涵盖物品,经验,金钱等网游中可直接给予玩家的元素.一个简单,直观,可扩展的掉落系统对网游中的产出控制起非常重要的作用. 奖

线段树(segment tree)

1.概述 线段树,也叫区间树,是一个完全二叉树,它在各个节点保存一条线段(即"子数组"),因而常用于解决数列维护问题,基本能保证每个操作的复杂度为O(lgN). 线段树是一种二叉搜索树,与区间树相似,它将一个区间划分成一些单元区间,每个单元区间对应线段树中的一个叶结点. 对于线段树中的每一个非叶子节点[a,b],它的左儿子表示的区间为[a,(a+b)/2],右儿子表示的区间为[(a+b)/2+1,b].因此线段树是平衡二叉树,最后的子节点数目为N,即整个线段区间的长度. 使用线段树可以

Leetcode 树 Symmetric Tree

本文为senlie原创,转载请保留此地址:http://blog.csdn.net/zhengsenlie Symmetric Tree Total Accepted: 13991 Total Submissions: 44240 Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center). For example, this binary tree is symmet

Leetcode 树 Same Tree

本文为senlie原创,转载请保留此地址:http://blog.csdn.net/zhengsenlie Same Tree Total Accepted: 15922 Total Submissions: 38418 Given two binary trees, write a function to check if they are equal or not. Two binary trees are considered equal if they are structurally

显示目录树命令tree

-a:显示所有文件,包括隐藏文件 -d:只显示目录 -f:显示完整的文件名,包含路径 -L:显示目录树的深度 [[email protected] /]# tree -L 2 -a -f /home /home |-- /home/99user.ldif |-- /home/Legal | |-- /home/Legal/COPYRIGHT.txt | |-- /home/Legal/Entitlement_de.txt | |-- /home/Legal/Entitlement_es.txt

渲染树render tree

CSSOM树和DOM树连接在一起形成一个render tree,渲染树用来计算可见元素的布局并且作为将像素渲染到屏幕上的过程的输入. DOM树和CSSOM树连接在一起形成render tree . render tree只包含了用于渲染页面的节点 布局计算了每一个对象的准确的位置以及大小 绘画是最后一步,绘画要求利用render tree来将像素显示到屏幕上 第一步是结合DOM树和CSSOM树形成“render tree”,渲染树用来描述所有可见的DOM内容,并且将CSSOM样式信息附加到节点上

编程算法 - 后缀树(Suffix Tree) 代码(C)

后缀树(Suffix Tree) 代码(C) 本文地址: http://blog.csdn.net/caroline_wendy 给你一个长字符串s与很多短字符串集合{T1,, T2, ...}, 设计一个方法在s中查询T1, T2, ..., 要求找出Ti在s中的位置. 代码: /* * main.cpp * * Created on: 2014.7.20 * Author: Spike */ /*eclipse cdt, gcc 4.8.1*/ #include <iostream> #i