灰度图像--图像分割 Robert算子

学习DIP第43天

转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对此表示很不满意。有些网站转载了我的博文,很开心的是自己写的东西被更多人看到了,但不开心的是这段话被去掉了,也没标明转载来源,虽然这并没有版权保护,但感觉还是不太好,出于尊重文章作者的劳动,转载请标明出处!!!!

文章代码已托管,欢迎共同开发:https://github.com/Tony-Tan/DIPpro

开篇废话

废话开始,Robert算子,之前被用到了图像增强中的锐化,原因是作为一阶微分算子,Robert简单,计算量小,对细节反应敏感,之前说过算子对边缘检测的贡献是提供边缘候选点,Robert算子相比于其他3x3算子,在不经过后处理时,可以给出相对较细的边缘,有看一个博客,博主说Robert给出的边缘较粗,但根据我的测试结果,一阶微分中Robert给出的候选点是最细的,相关Robert基础知识参考前面博文“灰度图像--图像增强
Robert算子、Sobel算子
”。这里我们不在介绍重复知识。

算子比较

与标准一阶差分不同,Robert采用对角线差分,前面博文我曾说我懂为什么要使用对角线,现在有了答案,假设我们采用标准的一阶微分算子,对下面一个数字化的矩形进行横向和纵向的差分,并得出结果,红色表示算子模板中心:

可以看出,得到的边缘一部分是在内边界,一部分是外边界,并且,黄色像素点并未有计算结果,也就是,边缘候选点丢失了一个。

但是如果我们采用Robert算子计算,结果如下:

右下角为得到的结果,虽然边缘候选点依然有外边缘和内边缘,但没有遗漏边缘候选点,这就是Robert由于普通差分的地方,也就是对角线差分的好处。

检验完候选点后,接下来的任务是筛选,筛选算法有很多,但最简单的是阈值处理,即超过阈值的为边缘,否则为噪声,或非边缘,这样做的缺点是不准确,有点是速度极快。计算量相当小,在速度要求较高的但准确度要求不高的地方,可以使用Robert加阈值的简单处理。得到边缘。

代码实现结果

代码之前已经给出,这里只现实下阈值处理后的样子。

原图:

Robert+阈值(阈值给出方式为:边缘候选点的最大值的百分比):

总结

Robert算子可以检测到全部的边缘候选点,边界定位能力一般,原因是一阶微分对于斜坡型边缘定位都不准确,使用简单的阈值后可以去掉一些非边缘点,但检测结果准确性一般,但计算速度非常快。

待续。。。。

时间: 2024-12-04 14:30:47

灰度图像--图像分割 Robert算子的相关文章

灰度图像--图像增强 Robert算子、Sobel算子

学习DIP第36天 转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对此表示很不满意.有些网站转载了我的博文,很开心的是自己写的东西被更多人看到了,但不开心的是这段话被去掉了,也没标明转载来源,虽然这并没有版权保护,但感觉还是不太好,出于尊重文章作者的劳动,转载请标明出处!!!! 文章代码已托管,欢迎共同开发:https://github.com/Tony-Tan/DIPpro

灰度图像--图像分割 边缘检测算子 综述

转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对此表示很不满意.有些网站转载了我的博文,很开心的是自己写的东西被更多人看到了,但不开心的是这段话被去掉了,也没标明转载来源,虽然这并没有版权保护,但感觉还是不太好,出于尊重文章作者的劳动,转载请标明出处!!!! 文章代码已托管,欢迎共同开发:https://github.com/Tony-Tan/DIPpro 开篇废话 本来想这

灰度图像--图像分割 Sobel算子

学习DIP第44天 转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对此表示很不满意.有些网站转载了我的博文,很开心的是自己写的东西被更多人看到了,但不开心的是这段话被去掉了,也没标明转载来源,虽然这并没有版权保护,但感觉还是不太好,出于尊重文章作者的劳动,转载请标明出处!!!! 文章代码已托管,欢迎共同开发:https://github.com/Tony-Tan/DIPpro

灰度图像--图像分割 Sobel算子,Prewitt算子和Scharr算子平滑能力比较

学习DIP第47天 转载请标明本文出处:http://blog.csdn.net/tonyshengtan ,出于尊重文章作者的劳动,转载请标明出处!文章代码已托管,欢迎共同开发: https://github.com/Tony-Tan/DIPpro 开篇废话 依然是废话,这篇主要想对比下Sobel,Prewitt和Scharr算子的平滑能力,由于一阶微分对噪声响应强,进行微分之前进行降噪是非常必要的,这里我们进行的实验是,以lena图作为实验原图,取其中一行数据作为无噪声的原始信号,分别加上不

灰度图像--图像分割 Marr-Hildreth算子(LoG算子)

学习DIP第49天 转载请标明本文出处:http://blog.csdn.net/tonyshengtan ,出于尊重文章作者的劳动,转载请标明出处!文章代码已托管,欢迎共同开发: https://github.com/Tony-Tan/DIPpro 开篇废话 今天介绍二阶微分算子,二阶微分算子典型的是Laplace算子,LoG可以看成是一个高斯模板的拉普拉斯变换,但是也可以从根源上推导出LoG算子,而后面要介绍的DoG则是为了纯粹的减少计算,模拟LoG的一种方法. LoG原理 LoG最底层的原

灰度图像--图像分割 Prewitt算子

学习DIP第45天 转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对此表示很不满意.有些网站转载了我的博文,很开心的是自己写的东西被更多人看到了,但不开心的是这段话被去掉了,也没标明转载来源,虽然这并没有版权保护,但感觉还是不太好,出于尊重文章作者的劳动,转载请标明出处!!!! 文章代码已托管,欢迎共同开发:https://github.com/Tony-Tan/DIPpro

灰度图像--图像分割 Scharr算子

学习DIP第46天 转载请标明本文出处:http://blog.csdn.net/tonyshengtan ,出于尊重文章作者的劳动,转载请标明出处!文章代码已托管,欢迎共同开发: https://github.com/Tony-Tan/DIPpro ** 开篇废话 感受下markdown的写博客的感觉,好像在写程序一样,果然是程序员的好工具,不过开头怎么没有空格...一空格就自动变成代码了,这让我情何以堪,好吧,以后的文章开头不空格了.本来打算上一篇直接介绍Scharr算子,但是发现Prewi

灰度图像--图像增强 拉普拉斯算子

学习DIP第34天 转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对此表示很不满意.有些网站转载了我的博文,很开心的是自己写的东西被更多人看到了,但不开心的是这段话被去掉了,也没标明转载来源,虽然这并没有版权保护,但感觉还是不太好,出于尊重文章作者的劳动,转载请标明出处!!!! 文章代码已托管,欢迎共同开发:https://github.com/Tony-Tan/DIPpro

灰度图像--图像分割 边缘模型

学习DIP第41天 转载请标明本文出处:http://blog.csdn.net/tonyshengtan,欢迎大家转载,发现博客被某些论坛转载后,图像无法正常显示,无法正常表达本人观点,对此表示很不满意.有些网站转载了我的博文,很开心的是自己写的东西被更多人看到了,但不开心的是这段话被去掉了,也没标明转载来源,虽然这并没有版权保护,但感觉还是不太好,出于尊重文章作者的劳动,转载请标明出处!!!! 文章代码已托管,欢迎共同开发:https://github.com/Tony-Tan/DIPpro