CodeForces 17E Palisection(回文树)

E. Palisection

time limit per test

2 seconds

memory limit per test

128 megabytes

input

standard input

output

standard output

In an English class Nick had nothing to do at all, and remembered about wonderful strings called palindromes. We should remind you that a string is called a palindrome if it can be read the same
way both from left to right and from right to left. Here are examples of such strings: ?eye?, ?pop?,
?level?, ?aba?, ?deed?,
?racecar?, ?rotor?, ?madam?.

Nick started to look carefully for all palindromes in the text that they were reading in the class. For each occurrence of each palindrome in the text he wrote a pair — the position of the beginning and the position of the ending of this occurrence in the text.
Nick called each occurrence of each palindrome he found in the text subpalindrome. When he found all the subpalindromes, he decided to find out how many different pairs among these subpalindromes
cross. Two subpalindromes cross if they cover common positions in the text. No palindrome can cross itself.

Let‘s look at the actions, performed by Nick, by the example of text ?babb?. At first he wrote out all subpalindromes:

? ?b? — 1..1
? ?bab? — 1..3
? ?a? — 2..2
? ?b? — 3..3
? ?bb? — 3..4
? ?b? — 4..4

Then Nick counted the amount of different pairs among these subpalindromes that cross. These pairs were six:

1. 1..1 cross with 1..3
2. 1..3 cross with 2..2
3. 1..3 cross with 3..3
4. 1..3 cross with 3..4
5. 3..3 cross with 3..4
6. 3..4 cross with 4..4

Since it‘s very exhausting to perform all the described actions manually, Nick asked you to help him and write a program that can find out the amount of different subpalindrome pairs that cross. Two subpalindrome pairs are regarded as different if one of the
pairs contains a subpalindrome that the other does not.

Input

The first input line contains integer n (1?≤?n?≤?2·106)
— length of the text. The following line contains n lower-case Latin letters (from ato z).

Output

In the only line output the amount of different pairs of two subpalindromes that cross each other. Output the answer modulo 51123987.

Examples

input

4
babb

output

6

input

2
aa

output

2
给你一个串让你求,所有相交的回文子串对的个数
我们可以利用回文树求出以s[i]为结尾的回文子串个数Ai,和以s[i]为开始的的回文串个数Bi
那么不相交的回文子串对就是Ai*sum{Bi+1,Bi+2,Bi+3....Bi+n}  {i=1..n-1};
然后用总的回文串对数减去不相交的就是答案。
我们知道利用回文树可以求出以i为结尾的回文串个数,那么以i为开始的,只需要将字符串倒着插入就好了。

另外,这道题目的字符串的长度有2百万,回文树中的next[][]数组,将会内存超限,所以只能用邻接表代替矩阵了

为了对回文树更好的学习,在求所有回文子串和的时候我们可以用两种方式,具体看代码

#include <iostream>
#include <string.h>
#include <stdlib.h>
#include <algorithm>
#include <math.h>
#include <stdio.h>

using namespace std;
typedef long long int LL;
const int MAX=2*1e6;
const int mod=51123987;
int n;
char str[MAX+5];
int sum[MAX+5];
struct link //next的邻接表
{
    int u[MAX+5];int v[MAX+5];
    int next[MAX+5];int head[MAX+5];
    int tot;
    void clear()
    {
        memset(head,-1,sizeof(head));
        tot=0;
    }
    void clear(int x){head[x]=-1;}
    int get(int x,int y)
    {
        for(int i=head[x];i!=-1;i=next[i])
        {
            if(u[i]==y)
                return v[i];
        }
        return 0;
    }
    void insert(int x,int y,int z)
    {
        u[tot]=y;  v[tot]=z;
        next[tot]=head[x];
        head[x]=tot++;
    }

};
struct Tree
{
    //int next[MAX+5][26];
    int fail[MAX+5];//指向当前节点回文串中最长的后缀回文子串
    int cnt[MAX+5];//当前节点的回文串一共有多少个
    int num[MAX+5];//当前节点为结尾的回文子串的个数
    int len[MAX+5];//当前节点的回文串的长度
    int s[MAX+5];//字符串
    int last;//回文树最后一个节点
    int n;
    int p;//回文树当前有多少个节点
    link next;//邻接表,表示当前节点回文串在两端添加一个字符形成的另一个节点的回文串
    int new_node(int x)
    {
        //memset(next[p],0,sizeof(next[p]));
        cnt[p]=0;
        next.clear(p);
        num[p]=0;
        len[p]=x;
        return p++;
    }

    void init()
    {
        next.clear();
        p=0;
	new_node(0);
        new_node(-1);
        last=0;
        n=0;
        s[0]=-1;
        fail[0]=1;
    }

    int get_fail(int x)
    {
        while(s[n-len[x]-1]!=s[n])
            x=fail[x];
        return x;
    }

    int add(int x)
    {
        x-='a';
        s[++n]=x;
        int cur=get_fail(last);
        if(!(last=next.get(cur,x)))
        {
            int now=new_node(len[cur]+2);
	    fail[now]=next.get(get_fail(fail[cur]),x);
            next.insert(cur,x,now);
            num[now]=num[fail[now]]+1;
	    last=now;
        }
        cnt[last]++;
        return num[last];
    }
    LL Allsum()//求出所有回文子串的数目
    {
        LL ret=0;

        for(int i=p-1;i>0;i--)
        {
	    cnt[fail[i]]=(cnt[fail[i]]+cnt[i])%mod;

            ret=(ret+cnt[i])%mod;
        }
        return ret;
    }
}tree;
int main()
{
    scanf("%d",&n);
    scanf("%s",str);
    tree.init();
    sum[n]=0;
    for(int i=n-1;i>=0;i--)
        sum[i]=(sum[i+1]+tree.add(str[i]))%mod;
    tree.init();
    LL ans=0;LL res=0;LL res2=0;
    for(int i=0;i<=n-1;i++)
    {
        ans=(ans+(LL)tree.add(str[i])*sum[i+1])%mod;
        res2+=tree.num[tree.last];//同样也可以求所有回文子串的数目
    }
	res=tree.Allsum();
	//cout<<res<<" "<<res2<<endl;两个是相等的
    ans=(((LL)res*(res-1)/2%mod-ans)%mod+mod)%mod;
    printf("%lld\n",ans);
    return 0;
}

				
时间: 2024-10-07 06:28:11

CodeForces 17E Palisection(回文树)的相关文章

【CF17E】Palisection(回文树)

[CF17E]Palisection(回文树) 题面 洛谷 题解 题意: 求有重叠部分的回文子串对的数量 所谓正难则反 求出所有不重叠的即可 求出以一个位置结束的回文串的数量 和以一个位置为开始的回文串的数量 然后对应的乘一下就行了 求法我用的是回文树 维护每个节点到根节点的距离, 就是回文后缀的数量 CF上的空间是\(128MB\) 卡的很 所以所有的连边考虑用邻接表来代替 #include<iostream> #include<cstdio> #include<cstdl

Codeforces 932G Palindrome Partition - 回文树 - 动态规划

题目传送门 通往???的传送点 通往神秘地带的传送点 通往未知地带的传送点 题目大意 给定一个串$s$,要求将$s$划分为$t_{1}t_{2}\cdots t_{k}$,其中$2\mid k$,且$t_{i} = t_{k - i}$,问方案数. 直接做不太好做.虽然可以$O(n^{2})$进行动态规划. 考虑做一步转化:设$s' = s_{1}s_{n}s_{2}s_{n - 1}\cdots s_{n / 2}s_{n / 2 + 1}$. 然后它的一个偶回文划分可以和原来的划分一一对应.

CF17E Palisection(回文树)

题意翻译 给定一个长度为n的小写字母串.问你有多少对相交的回文子 串(包含也算相交) . 输入格式 第一行是字符串长度n(1<=n<=2*10^6),第二行字符串 输出格式 相交的回文子串个数%51123987 Translated by liyifeng 题目描述 In an English class Nick had nothing to do at all, and remembered about wonderful strings called palindromes. We sh

回文树

(没有坑怎么填?) 最近膜了一些关于回文串的题目,感到非常有意思,遂开篇记录. 在逛UOJ的题目时发现了vfk添上了新题,APIO 2014的题目.本身是一件很正常的事,而它事实上也没有变成什么了不得的事.我看到了Palindrome这个标题---回文串已经烂大街了,没什么新意.不过我很早就向学习回文树这东西了,久仰其大名而未尝真正去了结果它,于是我就顺手撸了一把豪哥的论文,发现他讲解的实在是晦涩难懂---论文的通病,就是虽然表述没有歧义,但是难以理解.嘛,然后我就找了几个标程,发现回文树这东西

回文树或者回文自动机,及相关例题

回文树简述 在大部分说法中,回文树与回文自动机指的是一个东西: 回文树是对一个字符串,基于自动机思想构建的处理回文问题的树形结构: 回文树是对着一个单串建立的: 于是他主要用于计数(回文子串种类及个数) 基本建立思路是先建立其前缀的回文树,然后每加上一个字符,统计影响: 回文树存在fail指针但一般不承接字符串匹配问题: (回文树大概可以判定一个回文串是不是一个串的子串,但KMP之类的可以做得更好) 构建好的回文树,是这样的: (好难看) 可看出: 存在两个树结构,分别记录奇数|偶数长度的回文:

bzoj3676: [Apio2014]回文串 回文树

回文树的裸题. #include<bits/stdc++.h> #define REP(i,a,b) for(int i=a;i<=b;i++) #define MS0(a) memset(a,0,sizeof(a)) using namespace std; typedef long long ll; const int maxn=500100; const int INF=1e9+10; struct PalinTree { int ch[maxn][26],f[maxn]; int

HDU3948 &amp; 回文树模板

Description: 求本质不同回文子串的个数 Solution: 回文树模板,学一学贴一贴啊... Code: /*================================= # Created time: 2016-04-20 20:55 # Filename: hdu3948.cpp # Description: =================================*/ #define me AcrossTheSky&HalfSummer11 #include &l

hdu5658 CA Loves Palindromic 回文树

回文树在处理回文方面真的比manacher要好用得多... #include<iostream> #include<cstdio> #include<cstring> #include<cstdlib> #include<algorithm> #define REP(i,a,b) for(int i=a;i<=b;i++) #define MS0(a) memset(a,0,sizeof(a)) using namespace std; t

HDU 5157 Harry and magic string(回文树)

Harry and magic string Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 223    Accepted Submission(s): 110 Problem Description Harry got a string T, he wanted to know the number of T's disjoint