HDU 5047 Sawtooth (JAVA大数类)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5047

题面:

Sawtooth

Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

Total Submission(s): 1636    Accepted Submission(s): 637

Problem Description

Think about a plane:

● One straight line can divide a plane into two regions.

● Two lines can divide a plane into at most four regions.

● Three lines can divide a plane into at most seven regions.

● And so on...

Now we have some figure constructed with two parallel rays in the same direction, joined by two straight segments. It looks like a character “M”. You are given N such “M”s. What is the maximum number of regions that these “M”s can divide a plane ?

Input

The first line of the input is T (1 ≤ T ≤ 100000), which stands for the number of test cases you need to solve.

Each case contains one single non-negative integer, indicating number of “M”s. (0 ≤ N ≤ 1012)

Output

For each test case, print a line “Case #t: ”(without quotes, t means the index of the test case) at the beginning. Then an integer that is the maximum number of regions N the “M” figures can divide.

Sample Input

2
1
2

Sample Output

Case #1: 2
Case #2: 19

Source

2014 ACM/ICPC Asia Regional Shanghai Online

解题:

每一个M四条边,每条边最多与原来的边相交,形成4*(n-1)个交点,是不是和欧拉定理有关??然后队友就神奇搬地推出f(n)=f(n-1)+4*4*(n-1)+1;然后就出来了8*n^2-7*n+1...

好吧,重点是他直接用公式配合C++大数模板T了。于是,我用JAVA大数类交了一发,1900ms,不得不说时间卡得真紧。上网一查,原来JAVA的读入输出是能够优化的,详见这篇博客。我自己用大数交了一下800ms,不过貌似也可以在大数乘上优化。

代码(JAVA):

import java.io.*;
import java.util.*;
import java.math.*;
;public class Main {
	public static void main(String args[])
	{
		Scanner cin = new Scanner(System.in);
        int t=cin.nextInt();
        for(int i=1;i<=t;i=i+1)
        {
        	BigInteger ans,tmp;
        	BigInteger n=cin.nextBigInteger();
        	ans=n.multiply(n);
        	ans=ans.multiply(BigInteger.valueOf(8));
        	tmp=n.multiply(BigInteger.valueOf(7));
        	ans=ans.subtract(tmp);
        	ans=ans.add(BigInteger.ONE);
        	System.out.println("Case #"+i+": "+ans);
        }
	}
}

代码(JAVA优化版):

import java.io.*;
import java.util.*;
import java.math.*;
;public class Main {
	public static void main(String args[])
	{
		Scanner sc = new Scanner(new BufferedInputStream(System.in));
		PrintWriter cout=new PrintWriter(System.out);
        int t=sc.nextInt();
        for(int i=1;i<=t;i=i+1)
        {
        	BigInteger ans,tmp;
        	BigInteger n=sc.nextBigInteger();
        	ans=n.multiply(n);
        	ans=ans.multiply(BigInteger.valueOf(8));
        	tmp=n.multiply(BigInteger.valueOf(7));
        	ans=ans.subtract(tmp);
        	ans=ans.add(BigInteger.ONE);
        	cout.println("Case #"+i+": "+ans);
        }
        cout.flush();
	}
}

代码(C++大数模板):

#include<iostream>
#include<string>
#include<iomanip>
#include<cstring>
#include<algorithm>
using namespace std; 

#define MAXN 9999
#define MAXSIZE 10
#define DLEN 4

class BigNum
{
private:
	int a[500];    //可以控制大数的位数
	int len;       //大数长度
public:
	BigNum(){ len = 1;memset(a,0,sizeof(a)); }   //构造函数
	BigNum(const int);       //将一个int类型的变量转化为大数
	BigNum(const char*);     //将一个字符串类型的变量转化为大数
	BigNum(const BigNum &);  //拷贝构造函数
	BigNum &operator=(const BigNum &);   //重载赋值运算符,大数之间进行赋值运算

	friend istream& operator>>(istream&,  BigNum&);   //重载输入运算符
	friend ostream& operator<<(ostream&,  BigNum&);   //重载输出运算符

	BigNum operator+(const BigNum &) const;   //重载加法运算符,两个大数之间的相加运算
	BigNum operator-(const BigNum &) const;   //重载减法运算符,两个大数之间的相减运算
	BigNum operator*(const BigNum &) const;   //重载乘法运算符,两个大数之间的相乘运算
	BigNum operator/(const int   &) const;    //重载除法运算符,大数对一个整数进行相除运算

	BigNum operator^(const int  &) const;    //大数的n次方运算
	int    operator%(const int  &) const;    //大数对一个int类型的变量进行取模运算
	bool   operator>(const BigNum & T)const;   //大数和另一个大数的大小比较
	bool   operator>(const int & t)const;      //大数和一个int类型的变量的大小比较

	void print();       //输出大数
};
BigNum::BigNum(const int b)     //将一个int类型的变量转化为大数
{
	int c,d = b;
	len = 0;
	memset(a,0,sizeof(a));
	while(d > MAXN)
	{
		c = d - (d / (MAXN + 1)) * (MAXN + 1);
		d = d / (MAXN + 1);
		a[len++] = c;
	}
	a[len++] = d;
}
BigNum::BigNum(const char*s)     //将一个字符串类型的变量转化为大数
{
	int t,k,index,l,i;
	memset(a,0,sizeof(a));
	l=strlen(s);
	len=l/DLEN;
	if(l%DLEN)
		len++;
	index=0;
	for(i=l-1;i>=0;i-=DLEN)
	{
		t=0;
		k=i-DLEN+1;
		if(k<0)
			k=0;
		for(int j=k;j<=i;j++)
			t=t*10+s[j]-'0';
		a[index++]=t;
	}
}
BigNum::BigNum(const BigNum & T) : len(T.len)  //拷贝构造函数
{
	int i;
	memset(a,0,sizeof(a));
	for(i = 0 ; i < len ; i++)
		a[i] = T.a[i];
}
BigNum & BigNum::operator=(const BigNum & n)   //重载赋值运算符,大数之间进行赋值运算
{
	int i;
	len = n.len;
	memset(a,0,sizeof(a));
	for(i = 0 ; i < len ; i++)
		a[i] = n.a[i];
	return *this;
}
istream& operator>>(istream & in,  BigNum & b)   //重载输入运算符
{
	char ch[MAXSIZE*4];
	int i = -1;
	in>>ch;
	int l=strlen(ch);
	int count=0,sum=0;
	for(i=l-1;i>=0;)
	{
		sum = 0;
		int t=1;
		for(int j=0;j<4&&i>=0;j++,i--,t*=10)
		{
			sum+=(ch[i]-'0')*t;
		}
		b.a[count]=sum;
		count++;
	}
	b.len =count++;
	return in;

}
ostream& operator<<(ostream& out,  BigNum& b)   //重载输出运算符
{
	int i;
	cout << b.a[b.len - 1];
	for(i = b.len - 2 ; i >= 0 ; i--)
	{
		cout.width(DLEN);
		cout.fill('0');
		cout << b.a[i];
	}
	return out;
}

BigNum BigNum::operator+(const BigNum & T) const   //两个大数之间的相加运算
{
	BigNum t(*this);
	int i,big;      //位数
	big = T.len > len ? T.len : len;
	for(i = 0 ; i < big ; i++)
	{
		t.a[i] +=T.a[i];
		if(t.a[i] > MAXN)
		{
			t.a[i + 1]++;
			t.a[i] -=MAXN+1;
		}
	}
	if(t.a[big] != 0)
		t.len = big + 1;
	else
		t.len = big;
	return t;
}
BigNum BigNum::operator-(const BigNum & T) const   //两个大数之间的相减运算
{
	int i,j,big;
	bool flag;
	BigNum t1,t2;
	if(*this>T)
	{
		t1=*this;
		t2=T;
		flag=0;
	}
	else
	{
		t1=T;
		t2=*this;
		flag=1;
	}
	big=t1.len;
	for(i = 0 ; i < big ; i++)
	{
		if(t1.a[i] < t2.a[i])
		{
			j = i + 1;
			while(t1.a[j] == 0)
				j++;
			t1.a[j--]--;
			while(j > i)
				t1.a[j--] += MAXN;
			t1.a[i] += MAXN + 1 - t2.a[i];
		}
		else
			t1.a[i] -= t2.a[i];
	}
	t1.len = big;
	while(t1.a[t1.len - 1] == 0 && t1.len > 1)
	{
		t1.len--;
		big--;
	}
	if(flag)
		t1.a[big-1]=0-t1.a[big-1];
	return t1;
} 

BigNum BigNum::operator*(const BigNum & T) const   //两个大数之间的相乘运算
{
	BigNum ret;
	int i,j,up;
	int temp,temp1;
	for(i = 0 ; i < len ; i++)
	{
		up = 0;
		for(j = 0 ; j < T.len ; j++)
		{
			temp = a[i] * T.a[j] + ret.a[i + j] + up;
			if(temp > MAXN)
			{
				temp1 = temp - temp / (MAXN + 1) * (MAXN + 1);
				up = temp / (MAXN + 1);
				ret.a[i + j] = temp1;
			}
			else
			{
				up = 0;
				ret.a[i + j] = temp;
			}
		}
		if(up != 0)
			ret.a[i + j] = up;
	}
	ret.len = i + j;
	while(ret.a[ret.len - 1] == 0 && ret.len > 1)
		ret.len--;
	return ret;
}
BigNum BigNum::operator/(const int & b) const   //大数对一个整数进行相除运算
{
	BigNum ret;
	int i,down = 0;
	for(i = len - 1 ; i >= 0 ; i--)
	{
		ret.a[i] = (a[i] + down * (MAXN + 1)) / b;
		down = a[i] + down * (MAXN + 1) - ret.a[i] * b;
	}
	ret.len = len;
	while(ret.a[ret.len - 1] == 0 && ret.len > 1)
		ret.len--;
	return ret;
}
int BigNum::operator %(const int & b) const    //大数对一个int类型的变量进行取模运算
{
	int i,d=0;
	for (i = len-1; i>=0; i--)
	{
		d = ((d * (MAXN+1))% b + a[i])% b;
	}
	return d;
}
BigNum BigNum::operator^(const int & n) const    //大数的n次方运算
{
	BigNum t,ret(1);
	int i;
	if(n<0)
		exit(-1);
	if(n==0)
		return 1;
	if(n==1)
		return *this;
	int m=n;
	while(m>1)
	{
		t=*this;
		for( i=1;i<<1<=m;i<<=1)
		{
			t=t*t;
		}
		m-=i;
		ret=ret*t;
		if(m==1)
			ret=ret*(*this);
	}
	return ret;
}
bool BigNum::operator>(const BigNum & T) const   //大数和另一个大数的大小比较
{
	int ln;
	if(len > T.len)
		return true;
	else if(len == T.len)
	{
		ln = len - 1;
		while(a[ln] == T.a[ln] && ln >= 0)
			ln--;
		if(ln >= 0 && a[ln] > T.a[ln])
			return true;
		else
			return false;
	}
	else
		return false;
}
bool BigNum::operator >(const int & t) const    //大数和一个int类型的变量的大小比较
{
	BigNum b(t);
	return *this>b;
}

void BigNum::print()    //输出大数
{
	int i;
	cout << a[len - 1];
	for(i = len - 2 ; i >= 0 ; i--)
	{
		cout.width(DLEN);
		cout.fill('0');
		cout << a[i];
	}
	cout << endl;
}
int main(void)
{
	int t;
	BigNum n,ans;
    cin>>t;
	for(int i=1;i<=t;i++)
	{
		cin>>n;
		cout<<"Case #"<<i<<": ";
		ans=BigNum(8)*n*n-BigNum(7)*n+BigNum(1);
		cout<<ans<<endl;
	}
	return 0;
}

版权声明:本文为博主原创文章,未经博主允许不得转载。

时间: 2024-12-15 01:46:35

HDU 5047 Sawtooth (JAVA大数类)的相关文章

HDU 5047 Sawtooth(大数优化+递推公式)

http://acm.hdu.edu.cn/showproblem.php?pid=5047 题目大意: 给n条样子像“m”的折线,求它们能把二维平面分成的面最多是多少. 解题思路: 我们发现直线1条:2平面:2直线:4平面:3直线:7平面......因为第n条直线要与前面n-1条直线都相交,才能使分的平面最多,则添加第n条直线,平面增加n个: 所以公式是面F = 2 + 2 + 3 + ......+ n = (1+n)*n/2 + 1 因为题目的是“M”的折线,一个“M”有4条线将平面分成2

多校第六场 HDU 4927 JAVA大数类

题目大意:给定一个长度为n的序列a,每次生成一个新的序列,长度为n-1,新序列b中bi=ai+1?ai,直到序列长度为1.输出最后的数. 思路:这题实在是太晕了,比赛的时候搞了四个小时,从T到WA,唉--对算组合还是不太了解啊,现在对组合算比较什么了-- import java.io.*; import java.math.*; import java.util.*; public class Main { public static void main(String[] args) { Sca

HDU高精度总结(java大数类)

  HDU1002   A + B Problem II [题意]大数相加 [链接]http://acm.hdu.edu.cn/showproblem.php?pid=1002 Sample Input 2 1 2 112233445566778899 998877665544332211 Sample Output Case 1: 1 + 2 = 3 Case 2: 112233445566778899 + 998877665544332211 = 1111111111111111110 代码

Java大数类介绍

java能处理大数的类有两个高精度大整数BigInteger 和高精度浮点数BigDecimal,这两个类位于java.math包内,要使用它们必须在类前面引用该包:import java.math.BigInteger;和import java.math.BigDecimal;或者import java.math.*; 下面从几个方面对BigInteger和BigDecima做一个简单的比较: 一.常量 BigInteger:ONE,ZERO,TEN分别代表1,0,10. 其定义类似于:pub

java大数类操作以及应用(UVA)

首先,先看看java大数的基本操作 Ⅰ基本函数: 1.valueOf(parament); 将参数转换为制定的类型 比如 int a=3; BigInteger b=BigInteger.valueOf(a); 则b=3; String s="12345"; BigInteger c=BigInteger.valueOf(s); 则c=12345: 2.add(); 大整数相加 BigInteger a=new BigInteger("23"); BigIntege

JAVA大数类—基础操作(加减乘除、取模、四舍五入、设置保留位数)

当基础数据类型长度无法满足需求时可以使用大数类 构造方法接受字符串为参数 1 BigInteger bInt = new BigInteger("123123"); 2 BigDecimal bDouble = new BigDecimal("123123.123123124"); 基础操作(取模使用divideAndRemainder方法,返回的数组第二个元素为余数): BigDecimal在做除法时必须设定传入精度(保留多少位小数),否则会出现异常:java.l

hdu 1042 N! java大数及判断文件末尾

N! Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 262144/262144 K (Java/Others)Total Submission(s): 73503    Accepted Submission(s): 21308 Problem Description Given an integer N(0 ≤ N ≤ 10000), your task is to calculate N! Input One N in on

HDU 5050 Java 大数类+读入二进制

http://acm.hdu.edu.cn/showproblem.php?pid=5050 才知道 原来JAVA这么好用,连二进制都封装好了 in.nextBigInteger(2)  就是按二进制读入 当然a.gcd(b).toString(2)  是按二进制输出一个二进制String,  a,b是大数 另外,JAVA交代码原来是class Main import java.math.BigInteger; import java.util.Scanner; public class Mai

HDU 5047 Sawtooth(数学 公式 大数)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5047 Problem Description Think about a plane: ● One straight line can divide a plane into two regions. ● Two lines can divide a plane into at most four regions. ● Three lines can divide a plane into at m