[DP 矩阵快速幂] BZOJ 1875 [SDOI2009]HH去散步

一个DP

用矩阵快速幂加速

然后这个DP状态比较巧妙 以边作状态

#include<cstdio>
#include<cstdlib>
#include<algorithm>
#include<cstring>
#define cl(x) memset(x,0,sizeof(x))
using namespace std;

inline char nc()
{
	static char buf[100000],*p1=buf,*p2=buf;
	if (p1==p2) { p2=(p1=buf)+fread(buf,1,100000,stdin); if (p1==p2) return EOF; }
	return *p1++;
}

inline void read(int &x){
	char c=nc(),b=1;
	for (;!(c>='0' && c<='9');c=nc()) if (c=='-') b=-1;
	for (x=0;c>='0' && c<='9';x=x*10+c-'0',c=nc()); x*=b;
}

const int P=45989;
const int M=125;

struct Matrix{
	int a[M][M];
	int n;
	Matrix(){
	}
	Matrix(int _n,int i=0){
		n=_n; cl(a);
		if (i) for (int j=1;j<=n;j++) a[j][j]=1;
	}
	friend Matrix operator * (const Matrix &A,const Matrix &B){
		int n=A.n; Matrix ret(n);
		for (int i=1;i<=n;i++)
			for (int j=1;j<=n;j++)
				for (int k=1;k<=n;k++)
					(ret.a[i][j]+=A.a[i][k]*B.a[k][j]%P)%=P;
		return ret;
	}
}A;

struct edge{
	int u,v;
	edge(int u=0,int v=0):u(u),v(v) { }
}edges[M];
int tot=1;

int n,m,round,S,T;

inline Matrix Pow(Matrix a,int b){
	Matrix ret(a.n,1);
	for (;b;b>>=1,a=a*a)
		if (b&1)
			ret=ret*a;
	return ret;
}

int ans[M],Ans;

int main()
{
	int iu,iv;
	freopen("t.in","r",stdin);
	freopen("t.out","w",stdout);
	read(n); read(m); read(round); read(S); read(T); S++; T++;
	for (int i=1;i<=m;i++)
	{
		read(iu); read(iv); iu++; iv++;
		edges[++tot]=edge(iu,iv); edges[++tot]=edge(iv,iu);
	}
	A=Matrix(tot);
	for (int i=2;i<=tot;i++)
	{
		for (int j=2;j<=tot;j++)
		{
			if ((i^1)==j) continue;
			if (edges[i].u==edges[j].v)
				A.a[i][j]=1;
		}
		if (edges[i].u==S)
			A.a[i][1]=1;
	}
	A=Pow(A,round);
	for (int i=1;i<=tot;i++)
	{
		ans[i]=A.a[i][1];
		if (edges[i].v==T)
			(Ans+=ans[i])%=P;
	}
	printf("%d\n",Ans);
	return 0;
}
时间: 2024-10-25 03:16:30

[DP 矩阵快速幂] BZOJ 1875 [SDOI2009]HH去散步的相关文章

BZOJ 1875: [SDOI2009]HH去散步( dp + 矩阵快速幂 )

把双向边拆成2条单向边, 用边来转移...然后矩阵乘法+快速幂优化 --------------------------------------------------------------------------------------------- #include<cstdio> #include<cstring> #include<algorithm> using namespace std; const int MOD = 45989; const int

bzoj 1875: [SDOI2009]HH去散步 -- 矩阵乘法

1875: [SDOI2009]HH去散步 Time Limit: 20 Sec  Memory Limit: 64 MB Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但 是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回. 又因为HH是个喜欢变化的人,所以他每 天走过的路径都不完全一样,他想知道他究竟有多 少种散步的方法. 现在给你学校的地图(假设每条路的长度都 是一样的都是1),问长度为t,从给定

BZOJ 1875[SDOI2009]HH去散步

题面: 1875: [SDOI2009]HH去散步 Time Limit: 20 Sec  Memory Limit: 64 MBSubmit: 1750  Solved: 851[Submit][Status][Discuss] Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但 是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回. 又因为HH是个喜欢变化的人,所以他每 天走过的路径都不完全一样,他想知

bzoj 1875 [SDOI2009]HH去散步(矩乘)

Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回. 又因为HH是个喜欢变化的人,所以他每天走过的路径都不完全一样,他想知道他究竟有多 少种散步的方法. 现在给你学校的地图(假设每条路的长度都是一样的都是1),问长度为t,从给定地 点A走到给定地点B共有多少条符合条件的路径 Input 第一行:五个整数N,M,t,A,B.其中N表示学校里的路口的个数,M表

1875: [SDOI2009]HH去散步

Time Limit: 20 Sec Memory Limit: 64 MB Submit: 2333 Solved: 1204 [Submit][Status][Discuss] Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但 是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回. 又因为HH是个喜欢变化的人,所以他每 天走过的路径都不完全一样,他想知道他究竟有多 少种散步的方法. 现在给你学校的地图

BZOj-1875: [SDOI2009]HH去散步 (矩阵快速幂)

1875: [SDOI2009]HH去散步 Time Limit: 20 Sec  Memory Limit: 64 MBSubmit: 1999  Solved: 980[Submit][Status][Discuss] Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但 是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回. 又因为HH是个喜欢变化的人,所以他每 天走过的路径都不完全一样,他想知道他究竟

BZOJ1875: [SDOI2009]HH去散步

1875: [SDOI2009]HH去散步 Time Limit: 20 Sec  Memory Limit: 64 MBSubmit: 620  Solved: 265[Submit][Status] Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回. 又因为HH是个喜欢变化的人,所以他每天走过的路径都不完全一样,他想知道他究竟有多 少种散步的方法.

POJ3735 Training little cats DP,矩阵快速幂,稀疏矩阵优化

题目大意是,n只猫,有k个动作让它们去完成,并且重复m次,动作主要有三类gi,ei,s i j,分别代表第i只猫获得一个花生,第i只猫吃掉它自己所有的花生,第i只和第j只猫交换彼此的花生.k,n不超过100,m不超过1000,000,000,计算出最后每只猫还剩下多少个花生. 我们假设一个n维向量P,每个分量的值代表这n只猫所拥有的花生数,那么对于gi操作其实就是在第i维分量上加上1:对于ei,那就是在第i维分量上乘以0,说到这里,有木有感觉这很像3D坐标转化中的平移矩阵和缩放矩阵?没错,就是这

HDU 2294 Pendant (DP+矩阵快速幂降维)

HDU 2294 Pendant (DP+矩阵快速幂降维) ACM 题目地址:HDU 2294 Pendant 题意: 土豪给妹子做首饰,他有K种珍珠,每种N个,为了炫富,他每种珍珠都要用上.问他能做几种长度[1,N]的首饰. 分析: 1 ≤ N ≤ 1,000,000,000简直可怕. 首先想dp,很明显可以想到: dp[i][j] = (k-(j-1))*dp[i-1][j-1] + j*dp[i-1][j](dp[i][j]表示长度为i的并且有j种珍珠的垂饰有多少个) 然后遇到N太大的话,