串口通信 stm32

文件:mian.c

//功能:串口初始化、打开定时器中断,然后一直接收数据状态就好了。发送在中断中实现

#include "stm32f10x.h"
#include "usart.h"

u8 USART_rx_data;
int main(void)
{
  
  RCC_Configuration();      //系统时钟配置
  GPIO_Configuration();      //端口初始化
  NVIC_Configuration();      //中断源配置
  USART_Configuration();     //串口1初始化
  Time_Init();            //定时器初始化
  #ifdef DEBUG
      debug();
  #endif
  TIM_Cmd(TIM3,ENABLE); 
   while(1)
   {

}

}

文件:usart.c

#include "stm32f10x.h"
#include "stdio.h"
#include "usart.h"
  unsigned char auchCRCHi [256] ={
  0x00,0xC1,0x81,0x40,0x01,0xC0,0x80,0x41,0x01,0xC0,0x80,0x41,0x00,0xC1,0x81,0x40,
  0x01,0xC0,0x80,0x41,0x00,0xC1,0x81,0x40,0x00,0xC1,0x81,0x40,0x01,0xC0,0x80,0x41,
  0x01,0xC0,0x80,0x41,0x00,0xC1,0x81,0x40,0x00,0xC1,0x81,0x40,0x01,0xC0,0x80,0x41,
  0x00,0xC1,0x81,0x40,0x01,0xC0,0x80,0x41,0x01,0xC0,0x80,0x41,0x00,0xC1,0x81,0x40,
  0x01,0xC0,0x80,0x41,0x00,0xC1,0x81,0x40,0x00,0xC1,0x81,0x40,0x01,0xC0,0x80,0x41,
  0x00,0xC1,0x81,0x40,0x01,0xC0,0x80,0x41,0x01,0xC0,0x80,0x41,0x00,0xC1,0x81,0x40,
  0x00,0xC1,0x81,0x40,0x01,0xC0,0x80,0x41,0x01,0xC0,0x80,0x41,0x00,0xC1,0x81,0x40,
  0x01,0xC0,0x80,0x41,0x00,0xC1,0x81,0x40,0x00,0xC1,0x81,0x40,0x01,0xC0,0x80,0x41,
  0x01,0xC0,0x80,0x41,0x00,0xC1,0x81,0x40,0x00,0xC1,0x81,0x40,0x01,0xC0,0x80,0x41,
  0x00,0xC1,0x81,0x40,0x01,0xC0,0x80,0x41,0x01,0xC0,0x80,0x41,0x00,0xC1,0x81,0x40,
  0x00,0xC1,0x81,0x40,0x01,0xC0,0x80,0x41,0x01,0xC0,0x80,0x41,0x00,0xC1,0x81,0x40,
  0x01,0xC0,0x80,0x41,0x00,0xC1,0x81,0x40,0x00,0xC1,0x81,0x40,0x01,0xC0,0x80,0x41,
  0x00,0xC1,0x81,0x40,0x01,0xC0,0x80,0x41,0x01,0xC0,0x80,0x41,0x00,0xC1,0x81,0x40,
  0x01,0xC0,0x80,0x41,0x00,0xC1,0x81,0x40,0x00,0xC1,0x81,0x40,0x01,0xC0,0x80,0x41,
  0x01,0xC0,0x80,0x41,0x00,0xC1,0x81,0x40,0x00,0xC1,0x81,0x40,0x01,0xC0,0x80,0x41,
  0x00,0xC1,0x81,0x40,0x01,0xC0,0x80,0x41,0x01,0xC0,0x80,0x41,0x00,0xC1,0x81,0x40};
  unsigned char auchCRCLo [256] ={
  0x00,0xC0,0xC1,0x01,0xC3,0x03,0x02,0xC2,0xC6,0x06,0x07,0xC7,0x05,0xC5,0xC4,0x04,
  0xCC,0x0C,0x0D,0xCD,0x0F,0xCF,0xCE,0x0E,0x0A,0xCA,0xCB,0x0B,0xC9,0x09,0x08,0xC8,
  0xD8,0x18,0x19,0xD9,0x1B,0xDB,0xDA,0x1A,0x1E,0xDE,0xDF,0x1F,0xDD,0x1D,0x1C,0xDC,
  0x14,0xD4,0xD5,0x15,0xD7,0x17,0x16,0xD6,0xD2,0x12,0x13,0xD3,0x11,0xD1,0xD0,0x10,
  0xF0,0x30,0x31,0xF1,0x33,0xF3,0xF2,0x32,0x36,0xF6,0xF7,0x37,0xF5,0x35,0x34,0xF4,
  0x3C,0xFC,0xFD,0x3D,0xFF,0x3F,0x3E,0xFE,0xFA,0x3A,0x3B,0xFB,0x39,0xF9,0xF8,0x38,
  0x28,0xE8,0xE9,0x29,0xEB,0x2B,0x2A,0xEA,0xEE,0x2E,0x2F,0xEF,0x2D,0xED,0xEC,0x2C,
  0xE4,0x24,0x25,0xE5,0x27,0xE7,0xE6,0x26,0x22,0xE2,0xE3,0x23,0xE1,0x21,0x20,0xE0,
  0xA0,0x60,0x61,0xA1,0x63,0xA3,0xA2,0x62,0x66,0xA6,0xA7,0x67,0xA5,0x65,0x64,0xA4,
  0x6C,0xAC,0xAD,0x6D,0xAF,0x6F,0x6E,0xAE,0xAA,0x6A,0x6B,0xAB,0x69,0xA9,0xA8,0x68,
  0x78,0xB8,0xB9,0x79,0xBB,0x7B,0x7A,0xBA,0xBE,0x7E,0x7F,0xBF,0x7D,0xBD,0xBC,0x7C,
  0xB4,0x74,0x75,0xB5,0x77,0xB7,0xB6,0x76,0x72,0xB2,0xB3,0x73,0xB1,0x71,0x70,0xB0,
  0x50,0x90,0x91,0x51,0x93,0x53,0x52,0x92,0x96,0x56,0x57,0x97,0x55,0x95,0x94,0x54,
  0x9C,0x5C,0x5D,0x9D,0x5F,0x9F,0x9E,0x5E,0x5A,0x9A,0x9B,0x5B,0x99,0x59,0x58,0x98,
  0x88,0x48,0x49,0x89,0x4B,0x8B,0x8A,0x4A,0x4E,0x8E,0x8F,0x4F,0x8D,0x4D,0x4C,0x8C,
  0x44,0x84,0x85,0x45,0x87,0x47,0x46,0x86,0x82,0x42,0x43,0x83,0x41,0x81,0x80,0x40};

unsigned short CRC16(unsigned char* puchMsg, unsigned short usDataLen)
{

unsigned char uchCRCHi = 0xFF ;
  unsigned char uchCRCLo = 0xFF ;
  unsigned char uIndex ;
  while (usDataLen--)
  {
    uIndex = uchCRCHi^*puchMsg++;
    uchCRCHi = uchCRCLo^auchCRCHi[uIndex];
    uchCRCLo = auchCRCLo[uIndex];
  }
  return (uchCRCHi << 8 | uchCRCLo) ;
}

void RCC_Configuration(void)
{
  ErrorStatus HSEStartUpStatus;      //枚举变量,定义高速时钟的启动状态
  RCC_DeInit();                   //RCC系统重置,用于Debug目的
  RCC_HSEConfig(RCC_HSE_ON);                 //使能高速时钟源HSE  
  HSEStartUpStatus = RCC_WaitForHSEStartUp();    //等待HSE稳定
  if(HSEStartUpStatus == SUCCESS)
  {
    FLASH_SetLatency(FLASH_Latency_2);     
 FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);     
   
    RCC_HCLKConfig(RCC_SYSCLK_Div1);         // HCLK = SYSCLK
    RCC_PCLK2Config(RCC_HCLK_Div1);          // PCLK2 = HCLK
    RCC_PCLK1Config(RCC_HCLK_Div2);         ///PCLK1 = HCLK/2
 
    RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_9);
    RCC_PLLCmd(ENABLE);
    while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET){}

RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);
    while(RCC_GetSYSCLKSource() != 0x08){}
  }
  RCC_APB2PeriphClockCmd( RCC_APB2Periph_USART1 |RCC_APB2Periph_GPIOA |RCC_APB2Periph_AFIO |RCC_APB2Periph_GPIOB , ENABLE);
  RCC_APB1PeriphClockCmd(RCC_APB1Periph_TIM3, ENABLE);
}
//------------------------------------------------------------------
//函数名:void GPIO_Configuration()
//输入参数:null
//返回参数:null
//说明:GPIO初始化函数
//------------------------------------------------------------------
void GPIO_Configuration(void)
{
  GPIO_InitTypeDef GPIO_InitStructure;     //GPIO初始化结构体声明
 
 
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;          //USART1 TX
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP;    //复用推挽输出
  GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;  
  GPIO_Init(GPIOA, &GPIO_InitStructure);      //A端口
 
  GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;          //USART1 RX
  GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;   //复用浮空输入
  GPIO_Init(GPIOA, &GPIO_InitStructure);           //A端口

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_6; 
 GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;  
 GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
 GPIO_Init(GPIOB, &GPIO_InitStructure);
}

//------------------------------------------------------------------
//函数名:void NVIC_Configuration()
//输入参数:null
//返回参数:null
//说明:NVIC初始化函数
//------------------------------------------------------------------
void NVIC_Configuration(void)
{              
  NVIC_InitTypeDef NVIC_InitStructure;       //NVIC初始化结构体声明
 
  #ifdef VECT_TAB_RAM       
   
    NVIC_SetVectorTable(NVIC_VectTab_RAM, 0x0); //如果程序在RAM中调试那么定义中断向量表在RAM中否则在Flash中
  #else 
   
    NVIC_SetVectorTable(NVIC_VectTab_FLASH, 0x0);  
  #endif

NVIC_PriorityGroupConfig(NVIC_PriorityGroup_1);

NVIC_InitStructure.NVIC_IRQChannel = USART1_IRQn;         //设置串口1中断
  NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;         //抢占优先级 0
  NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;    //子优先级为0
  NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;     //使能
  NVIC_Init(&NVIC_InitStructure);

NVIC_InitStructure.NVIC_IRQChannel = TIM3_IRQn;           //设置定时器3全局中断
  NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 1;        //抢占优先级 1
  NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;            //子优先级为0
  NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;           //使能
  NVIC_Init(&NVIC_InitStructure);
}
//------------------------------------------------------------------
//函数名:void USART_Configuration()
//输入参数:null
//返回参数:null
//说明:串口初始化函数
//------------------------------------------------------------------
void USART_Configuration(void){
  USART_InitTypeDef USART_InitStructure;                   //串口初始化结构体声明
  USART_ClockInitTypeDef USART_ClockInitStruct;
  USART_InitStructure.USART_BaudRate = 115200;      //设置波特率为115200bps
  USART_InitStructure.USART_WordLength = USART_WordLength_8b;  //数据位8位
  USART_InitStructure.USART_StopBits = USART_StopBits_1;   //停止位1位
  USART_InitStructure.USART_Parity = USART_Parity_No;    //无校验位
  USART_InitStructure.USART_HardwareFlowControl = USART_HardwareFlowControl_None;   //无硬件流控
  USART_InitStructure.USART_Mode = USART_Mode_Rx | USART_Mode_Tx;     //接受和发送模式都打开

USART_ClockInitStruct.USART_Clock=USART_Clock_Disable;      //串口时钟禁止
  USART_ClockInitStruct.USART_CPOL=USART_CPOL_Low;        //数据低电平有效
  USART_ClockInitStruct.USART_CPHA=USART_CPHA_2Edge;    //配置CPHA使数据在第2个边沿的时候被捕获
  USART_ClockInitStruct.USART_LastBit=USART_LastBit_Disable;  // 禁用最后一位,使对应的时钟脉冲不会再输出到SCLK引脚
  USART_ClockInit(USART1, &USART_ClockInitStruct);      //配置USART与时钟相关的设置

USART_Init(USART1, &USART_InitStructure);       //配置串口参数函数

USART_ITConfig(USART1, USART_IT_RXNE, ENABLE);       //使能接收中断
//USART_ITConfig(USART1, USART_IT_TXE, ENABLE);    //使能发送缓冲空中断
//USART_ITConfig(USART1, USART_IT_TC, ENABLE);    //使能发送完成中断
  USART_ClearFlag(USART1,USART_FLAG_TC);         //清除发送完成标志位
  USART_Cmd(USART1, ENABLE);         //使能串口1
}
//------------------------------------------------------------------
//函数名:void Time_Init()
//输入参数:null
//返回参数:null
//说明:定时器初始化函数
//------------------------------------------------------------------
void Time_Init(void)
{
  TIM_TimeBaseInitTypeDef TIM_TimeBaseStructure;

TIM_DeInit(TIM3);            //复位TIM3定时器
  TIM_TimeBaseStructure.TIM_Period =7999;          //设置自动重装载寄存器锁存值,1ms溢出      
  TIM_TimeBaseStructure.TIM_Prescaler = 8;      //9分频 
  TIM_TimeBaseStructure.TIM_ClockDivision = 0x0;       //时钟分频因子           
  TIM_TimeBaseStructure.TIM_CounterMode = TIM_CounterMode_Up; //计数器向上计数模式                     
  
  TIM_TimeBaseInit(TIM3,&TIM_TimeBaseStructure);    //写TIM3各寄存器参数

TIM_ClearFlag(TIM3,TIM_FLAG_Update);

TIM_ITConfig(TIM3,TIM_IT_Update,ENABLE);

}

文件:usart.h

#ifndef _USART_H
#define _USART_H

#include
#include "stm32f10x.h"

void RCC_Configuration(void);   //声明RCC初始化函数
void GPIO_Configuration(void);   //声明GPIO初始化函数
void NVIC_Configuration(void);   //声明NVIC初始化函数
void USART_Configuration(void);   //声明串口初始化函数
void Time_Init(void);     //声明定时器初始化函数
unsigned short CRC16(unsigned char* puchMsg, unsigned short usDataLen);

#endif

文件:stm32f103x_it.c

//需要设置串口接收中断和定时器3中断,中断时间为1ms

//------------------------------------------------------------------
//函数名:void USART1_IRQHandler(void)
//输入参数:null
//返回参数:null
//说明:串口接收中断服务
//------------------------------------------------------------------
void USART1_IRQHandler(void)
{
  
  if(USART_GetITStatus(USART1, USART_IT_RXNE) != RESET)          //判断读寄存器是否非空
  {      
//    GPIO_SetBits(GPIOB,GPIO_Pin_6);
    rx_data[RbufCounter++]=USART_ReceiveData(USART1);    //接收字节到接收缓冲区
    if(USART_Rsv_Status==0)
    {
      if(RbufCounter>1)
      {
        if(rx_data[0]==0xA5&&rx_data[1]==0x5A)    //当接收到的数据帧头两个字节同时为0xA5和0x5A时
        {
          USART_Rsv_Status=1;
//           USART_SendData(USART1, rx_data[0]);
        }
        else
        {
          rx_data[0]=rx_data[1];
          RbufCounter=1;
         
        }
      }
    }
    else
    {
      USART_1ms_Cnt=0;
    }               
  }         
}
//------------------------------------------------------------------
//函数名:void TIM2_IRQHandler(void)
//输入参数:null
//返回参数:null
//说明:定时器2中断服务
//------------------------------------------------------------------
void TIM2_IRQHandler(void)
{

}
//------------------------------------------------------------------
//函数名:void TIM3_IRQHandler(void)
//输入参数:null
//返回参数:null
//说明:定时器3中断服务
//------------------------------------------------------------------
void TIM3_IRQHandler(void)
{

if(TIM_GetITStatus(TIM3,TIM_IT_Update)!=RESET)        //判断是否为定时器3溢出中断
  {
    
    GPIO_SetBits(GPIOB,GPIO_Pin_6);
    TIM_ClearITPendingBit(TIM3, TIM_IT_Update);  //清中断标记

if(USART_Rsv_Status==1)
    USART_1ms_Cnt++;
    if(USART_1ms_Cnt>5)     
    {
//      USART_SendData(USART1,0xAA);
      USART_Rsv_Status=0;     //连续计数超过5次对USART_Rsv_Status置0,继续等待接收
      USART_1ms_Cnt=0;         //当USART_1ms_Cnt>5时对USART_1ms_Cnt重新清零 
      if(RbufCounter==(u16)rx_data[4]+7)              //检验数据的完整性
      {
         int i;     //定义循环变量
        int j;
        data_length=rx_data[4];
        for(i=0;i
        {
          data[i]=rx_data[i];
        } 
        CRC_data_Hi=rx_data[RbufCounter-1];
        CRC_data_Lo=rx_data[RbufCounter-2];
        CRC_data=CRC16((unsigned char*)data,data_length+5);
        CRC_data_Hi1=CRC_data>>8;
        CRC_data_Lo1=CRC_data&0x00ff;
         if(CRC_data_Hi==(u8)CRC_data_Hi1 && CRC_data_Lo==CRC_data_Lo1)
         {
           for(j=0;rx_data[j]!=‘\0‘;j++)   //循环逐字输出,到结束字‘\0‘
           {       
             USART_SendData(USART1, rx_data[j]);     //发送字符
             while(USART_GetFlagStatus(USART1, USART_FLAG_TXE) == RESET)
             {
             } //等待字符发送完毕
           }
        }
      }
      RbufCounter=0;
    }     
  }
}

时间: 2024-11-02 16:30:06

串口通信 stm32的相关文章

STM32之串口通信

一.RS232通信协议 1.概念 个人计算机上的通讯接口之一,由电子工业协会(Electronic Industries Association,EIA) 所制定的异步传输标准接口. 2.电气特性 逻辑1(MARK): -3V--15V 逻辑0(SPACE):  +3-+15V 3.接口 实现全双工异步通信只需要三根线:RX.TX和GND. 二.常见COMS电平转RS232电平的芯片--MAX3232 1.逻辑输入与逻辑输出特性 2.RS232接口端输入特性 3.RS232接口端输出特性 三.S

[stm32][ucos] 1、基于ucos操作系统的LED闪烁、串口通信简单例程

* 内容简述: 本例程操作系统采用ucos2.86a版本, 建立了5个任务            任务名                                             优先级            APP_TASK_START_PRIO                               2            主任务                          Task_Com1_PRIO                                

嵌入式 02 STM32 07串口通信

STM32串口通信(F1系列包含3个USART和2个UART) 一.单片机与PC机串行通信研究目的和意义: 单片机自诞生以来以其性能稳定,价格低廉.功能强大.在智能仪器.工业装备以及日用电子消费产品中得到了广泛的应用.在单片机的输入输出控制中,除直接接上小键盘和LCD显示屏等方法外,一般都通过串口和上位机PC进行通信.这样不仅能够实现远程控制,而且能够利用PC机强大的数据处理功能以及友好的控制界面.在一般的利用PC机对单片机进行控制的场合,都是采用操作系统作为上位机的平台,其优点是界面友好,编程

stm32 普通IO口模拟串口通信

普通IO口模拟串口通信 串口通信协议 串口传输 默认 波特率9600 1起始位 1停止位 其他0 数据位是8位(注意图上的给错了). 传输时,从起始位开始,从一个数据的低位(LSB)开始发送,如图从左向右的顺序,对电平拉高或拉低,最后停止位时拉高. 波特率大小,改变延时时间即可.例如9600 波特率    根据公式 : 1/9600=0.000104s(大致) 也就是说每发送1bit延时104us (下面我用9600波特率来说,代码用的是19200) 串口发送       将电平拉低 延时104

电赛菜鸟营培训(三)&mdash;&mdash;STM32F103CB之串口通信

一.串口通信概念 1.缩写 USART:Universal Synchronous/Asynchronous Receiver/Transmitter 通用同步/异步接收和发送器 2.用处 (1)同步通信 双方必须先建立同步,即双方的时钟要调整到一个频率,收发双发不停地发送和接受连续的同步比特流. (2)异步通信 接收端必须时刻做好接受准备,而发送端则可以选择何时进行发送,但是发送时需要加一个开始标志和一个结束标志,表示一个发送阶段. 异步通信的优势在于简单. 3.分类 4.STM32F103C

51单片机之串口通信(三)

51单片机之串口通信(三) 已有 47 次阅读2015-12-29 00:21 |个人分类:51单片机| 单片机, 通信 用串口实现发送和接收同时可操作: 电脑显示结果如图: 源程序: /*项目名称:串口发送接收实验项目内容:串口发送接收同时进行,计算机发送数据给单片机控制P0口,从而控制LED灯的亮灭,单片机发送数据到计算机,计算机显示出来时间:2015年12月23日项目负责人:YUAN*/#include <reg52.h>typedef unsigned char uChar8;type

(转载)用vs2010开发基于VC++的MFC 串口通信一*****两台电脑同一个串口号之间的通信

此文章以visual C++数据採集与串口通信測控应用实战为參考教程 此文章适合VC++串口通信入门 一.页面布局及加入控件 1, 安装好vs2010如图 2, 新建一个基于VC++的MFC项目comm 注意:点击ok,然后next,这时候要将application type改成dialog base.接着next到最后一个对话框是将generated dasses改成CcommDlg,然后finish 4, 将新生成的项目的对话框默认dialog edit删去,如图 5,在对话框中加入两个st

嵌入式Linux裸机开发(七)——UART串口通信

嵌入式Linux裸机开发(七)--UART串口通信 一.UART串口通信简介 通用异步收发器简称UART,即UNIVERSAL ASYNCHRONOUS RECEIVER AND TRANSMITTER, 它用来传输串行数据.发送数据时, CPU 将并行数据写入UART,UAR按照一定的格式在一根电线上串 行发出:接收数据时, UART检测另一根电线的信号,将串行收集在缓冲区中, CPU 即可读取 UART 获得这些数据. 在 S5PV210中, UART提供了 4 对独立的异步串口I/O端口,

51单片机之串口通信(一)

一.基础知识 1.串行通信和并行通信:目前用的比较多的是串行通信.串行通信优点是连接简单,传输距离远:缺点是传输速度慢. 2.串行通信:分为同步通信和异步通信:异步通信是指发送和接收设备利用各自的时钟控制数据的发送和接收. 3.串行通信的传输方向:单工,半双工,全双工. 4.波特率:每秒钟传输2进制代码的位数,如1个字节为10位,每秒传输240个字节,则波特率为10*240=2400bps,单位是bps: 5.RS-232C:25个管脚,我们用到的是PGND(保护接地).TXD(发送数据),RX