基于FPGA的RGB565_YCbCr_Gray算法实现

前面我们讲了基于FPGA用VGA显示一副静态图片,那么接下来我们就接着前面的工程来实现我们图像处理的基础算法里最简单的一个那就是彩色图像转灰度的实现。

将彩色图像转化为灰度的方法有两种,一个是令RGB三个分量的数值相等,输出后便可以得到灰度图像,另一种是转化为YCbCr格式,将Y分量提取出来,YCbCr格式中的Y分量表示的是图像的亮度和浓度所以只输出Y分量,得到的图像就是灰度图像了。我在这里选择第二种方法实现。

YCBCr是通过有序的三元组来表示的,三元由Y(Luminance)、Cb(Chrominance-Blue)和Cr(Chrominance-Red)组成,其中Y表示颜色的明亮度和浓度,而Cb和Cr则分别表示颜色的蓝色浓度偏移量和红色浓度偏移量。人的肉眼对由YCbCr色彩空间编码的视频中的Y分量更敏感,而Cb和Cr的微小变化不会引起视觉上的不同,根据该原理,通过对Cb和Cr进行子采样来减小图像的数据量,使得图像对存储需求和传输带宽的要求大大降低,从而达到在完成图像压缩的同时也保证了视觉上几乎没有损失的效果,进而使得图像的传输速度更快,存储更加方便。我们要的到灰度图像,首先要将采集到的彩色图像转化为YCbCr。

我们配置摄像头采集到的数据是RGB565的格式,官方给出的转化公式是RGB888->YCbCr,所以先需要将RGB565转化为RGB888,转化方法如下:

24bit RGB888 -> 16bit RGB565 的转换(只取高位)

24ibt RGB888 {R7 R6 R5 R4 R3 R2 R1 R0} {G7 G6 G5 G4 G3 G2 G1 G0} {B7 B6 B5 B4 B3 B2 B1 B0}

16bit RGB656 {R7 R6 R5 R4 R3} {G7 G6 G5 G4 G3 G2} {B7 B6 B5 B4 B3}

同样也可以恢复回去。

16bit RGB565 -> 24bit RGB888 的转换(高位补低位)

16bit RGB656 {R4 R3 R2 R1 R0} {G5 G4 G3 G2 G1 G0} {B4 B3 B2 B1 B0}

24ibt RGB888 {R4 R3 R2 R1 R0 R2 R1 R0} {G5 G4 G3 G2 G1 G0 G1 G0} {B4 B3 B2 B1 B0 B2 B1 B0}

采用高位补低位的方法直接转化即可。

这是官方给的RGB888 to YCbCr的算法公式,我们可以直接把算法移植到FPGA上,但是我们都知道FPGA无法进行浮点运算,所以我们采取将整个式子右端先都扩大256倍,然后再右移8位,这样就得到了FPGA擅长的乘法运算和加法运算了。

这个计算式子看起来是十分简单的,但是要是直接用Verilog直接写出来,那么只能说,这个人的代码写的一塌糊涂,所以这里就引出FPGA中流水线的设计思想。

在这里我们选择加3级流水线,就第一个Y分量而言,先计算括号中得乘法运算,消耗一个时钟,然后将括号中的数据求和,消耗一个时钟,这里为了计算方便,将128也扩大256倍,放到括号中,最终结果除以256就行了也就是右移8位,在FPGA中我们只需要舍弃低8位取高8位就行。具体代码如下

将RGB565—>YCbCr成功后,提取出Y的值输出,就可以得到灰度色彩的图像了。

将采集到的RGB565的像素数据,输入到算法处理模块进行操作,由RGB565——>YCbCr——Gray官方给出的公式来算,先将RGB565拆分开R G B三个分量,使用如上公式计算的到Y Cb Cr是三个分量。

RGB转YCbCr算法的仿真过程,从图中可以看出,加了流水线后的运算过程,每一级运算相差一个时钟,然而每一级都在进行新的运算,我们加了3级流水线,这样运算速度可以提升3倍。

最后将Y分量的数据输出,进行位拼接,16位的RGB565像素R、G、B分量分别对应的取Y分量的高位,最后的输出显示出来就是灰度图像了。

最后将原图与经过转灰度算法之后的图片,进行比较,我们的lena美女是不是在灰白显示下也很好看呢!

如果你想获得本文的所有课件和工程代码,请关注本人的个人微信订阅号:开源FPGANingHeChuan或扫描下方二维码关注订阅号,在后台回复图像处理,即可获得本文的所有课件、资料、和工程源码哦!

转载请注明出处:NingHeChuan(宁河川)

个人微信订阅号:开源FPGANingHeChuan

如果你想及时收到个人撰写的博文推送,可以扫描左边二维码(或者长按识别二维码)关注个人微信订阅号

知乎ID:NingHeChuan

微博ID:NingHeChuan

原文地址:http://www.cnblogs.com/ninghechuan/p/7403725.html

时间: 2024-10-11 17:09:19

基于FPGA的RGB565_YCbCr_Gray算法实现的相关文章

基于FPGA的CNN算法移植(五)寻找志同道合的人

如果现在有人对这个车辆检测项目感兴趣,你负责算法,我负责FPGA硬件. ..................... ..................... 欢迎加入: FPGA广东交流群:162664354 .................... .................... 原文地址:https://www.cnblogs.com/sepeng/p/8856436.html

基于FPGA的腐蚀膨胀算法实现

本篇文章我要写的是基于的腐蚀膨胀算法实现,腐蚀膨胀是形态学图像处理的基础,,腐蚀在二值图像的基础上做"收缩"或"细化"操作,膨胀在二值图像的基础上做"加长"或"变粗"的操作.那么什么是二值图像呢?把一幅图片看做成一个二维的数组,那么二值图像是一个只有0和1的逻辑数组,我们前面Sobel边缘检测后的图像输出边缘效果,设置个阈值,大于阈值输出为1,小于阈值输出为0,最后输出就是一幅二维图像了. 上一篇我是直接用MATLAB处理后的

基于FPGA的Sobel边缘检测的实现

前面我们实现了使用PC端上位机串口发送图像数据到VGA显示,通过MATLAB处理的图像数据直接是灰度图像,后面我们在此基础上修改,从而实现,基于FPGA的动态图片的Sobel边缘检测.中值滤波.Canny算子边缘检测.腐蚀和膨胀等.那么这篇文章我们将来实现基于FPGA的Sobel边缘检测. 图像边缘:简言之,边缘就是图像灰度值突变的地方,亦即图像在该部分的像素值变化速度非常之快,这就好比在坐标轴上一条曲线有刚开始的平滑突然来个大转弯,在变化出的导数非常大. Sobel算子主要用作边缘检测,在技术

基于FPGA的均值滤波算法实现

我们为了实现动态图像的滤波算法,用串口发送图像数据到FPGA开发板,经FPGA进行图像处理算法后,动态显示到VGA显示屏上,前面我们把硬件平台已经搭建完成了,后面我们将利用这个硬件基础平台上来实现基于FPGA的一系列图像处理基础算法. 椒盐噪声(salt & pepper noise)是数字图像的一个常见噪声,所谓椒盐,椒就是黑,盐就是白,椒盐噪声就是在图像上随机出现黑色白色的像素.椒盐噪声是一种因为信号脉冲强度引起的噪声,产生清楚该噪声的算法也比较简单. 均值滤波的方法将数据存储成3x3的矩阵

基于FPGA的音频信号的FIR滤波(Matlab+Modelsim验证)

1 设计内容 本设计是基于FPGA的音频信号FIR低通滤波,根据要求,采用Matlab对WAV音频文件进行读取和添加噪声信号.FFT分析.FIR滤波处理,并分析滤波的效果.通过Matlab的分析验证滤波效果后,将叠加噪声信号的音频信号输出到txt文件里.然后使用Matlab语言编写滤波器模块和测试模块,通过Modelsim软件读取txt文件的数据,将数据送入滤波模块,最后将滤波的结果输出到txt文件里,最后用Matlab将处理的结果从txt文件读出.显示.FFT分析用Verilog设计的FIR滤

基于FPGA的图像开发平台 其他摄像头附件说明(OV5642 OV9655)

基于FPGA的图像开发平台 其他摄像头附件说明 FPGA_VIP_V101 编者 奇迹再现 个人博客 http://www.cnblogs.com/ccjt/ 联系邮箱 [email protected] 淘宝网址 http://ccjt.taobao.com 修订记录 见下页 版权归奇迹再现所有,抄袭请注明出处, 参考文献:CrazyBingo原创相关文档.请尊重原创. 前言: 本系统方案理论适合DVP绝大部分摄像头测试,调试及开发,针对其他摄像头,因为寄存器参数不同,需要进行相应移植. 目前

基于FPGA的均值滤波算法的实现

前面实现了基于FPGA的彩色图像转灰度处理,减小了图像的体积,但是其中还是存在许多噪声,会影响图像的边缘检测,所以这一篇就要消除这些噪声,基于灰度图像进行图像的滤波处理,为图像的边缘检测做好夯实基础. 椒盐噪声(salt & pepper noise)是数字图像的一个常见噪声,所谓椒盐,椒就是黑,盐就是白,椒盐噪声就是在图像上随机出现黑色白色的像素.椒盐噪声是一种因为信号脉冲强度引起的噪声,产生该噪声的算法也比较简单. 均值滤波的方法将数据存储成3x3的矩阵,然后求这个矩阵.在图像上对目标像素给

基于FPGA的Ethercat定制栈最大可实现32轴

基于FPGA的Ethercat主栈协议 (最大可带32轴同步运行,同步抖动±75ns,控制精度125us) 各位老板:我司有多年的FPGA研发经验:基于FPGA的Ethercat定制栈更是达到行业领先水平感谢抽空阅读,欢迎合作 市场痛点[PLC厂家的痛点]目前,国内的大多数PLC厂家主要通过增加运控模块来实现轴的运动控制,可控制的轴数比较少(通常是4-6轴),并且模块的价格高昂(一个模块几万).如果要控制多轴成本就更高,而且控制精度不高,轴与轴之间的精度很大,这意味着不能进入高精尖控制领域.[应

[转]基于TDOA声源定位算法仿真--MATLAB仿真

原文链接:https://blog.xxcxw.cn/2019/08/10/%e5%9f%ba%e4%ba%8etdoa%e5%a3%b0%e6%ba%90%e5%ae%9a%e4%bd%8d%e7%ae%97%e6%b3%95%e4%bb%bf%e7%9c%9f-matlab%e4%bb%bf%e7%9c%9f/ 转自:http://t.cn/AiTjYCqD 声源定位算法是利用麦克风阵列进行声音定位,属于宽带信号,传统的MUSIC和DOA算法并不适用该场景,本仿真主要用TDOA算法进行定位.