【线性代数】矩阵消元-高斯消元法

一、高斯消元法

 能使用消元法的情况:每次消元过程中,对角线元素始终不能为0,即矩阵可逆

我们一般利用高斯消元法进行矩阵的消元。下面我们通过举例说明:

如果按照我们初中所学的解法,一般是先用第三个方程将z用y表示,然后代入到第二个方程就可以用x来表示y和z,最后代入第一个方程就可以求得x,y,z。这个算法的核心就是消元!下面我们看看矩阵形式的消元法。

首先将上面的三元一次方程组表示为矩阵形式为:

为了方便,我们将等式右边的向量放到左边,构成增广矩阵(可以百度看看什么是增广矩阵)。下面是消元的具体步骤:

其中,上图中的第一个矩阵就是所说的增广矩阵,我们记作A,经过步骤E21得到的矩阵为B,经过步骤E32得到的矩阵为C。

步骤E21的目的是A21=0,这里是指用第二行减去第一行的三倍

步骤E32的目的是使A32=0,这里是指用第三行减去第二行的两倍

注:高斯消元的目的是使原矩阵(不要考虑最后一列,这一列是等式右边的,matlab是分别对左右两边进行消元的,我这里写在一起是为了方便)对角线下面的元素为0,变成上三角矩阵,在上面例子中本应该在步骤E21和步骤E32中还有步骤E31,使得A31=0。但是原矩阵的A31=0,所以没有必要进行操作。尽管这一步骤没有必要,但matlab会进行操作(没有人机智)。

通过消元得到的结果矩阵C(上图中的第三个矩阵),我们可以写出其方程组的形式:

上面方程组可以直接看出,z=-2,然后代入第二个方程得到y=1,再代入第一个方程得到x=2。

在上面的消元过程中,原始矩阵A经过步骤E21得到矩阵B,矩阵B经过步骤E32得到矩阵C,我们用矩阵来表示步骤E21,步骤E32,则可以得到:

把这两步综合起来得到:

总结,我们令方程组左边的矩阵为D,用初等矩阵E来表示消元操作,用上三角矩阵U表示消元得到的结果,则以上式为例:

二、置换矩阵

1、行交换:左乘

2、列交换:右乘

时间: 2024-11-14 13:56:15

【线性代数】矩阵消元-高斯消元法的相关文章

Duanxx的数学知识:线性代数 矩阵消元

第二节、矩阵消元

一.矩阵消元 在解方程组时我们经常用到消元法,通过对方程的倍乘.加减等操作可以得到所求方程的解.既然方程组可以用消元法进行求解,那么方程组变成矩阵自然也可以使用消元法. 我们召唤一个方程组 ,本来想先用方程组演示消元法的,但是方程组书写上太麻烦,所以,直接用矩阵演示了~~ 我们拿出它的系数矩阵 消元的知识准备:对系数矩阵消元 我们保留矩阵的第一行,然后消去下方所有行的多余变量 先从x位置开始. 既然要消去x,那么我们只需要关心矩阵的第一列,如图. 在图中我们可以看到,关键的位置是红色标记的1(我

矩阵算法 高斯消元 行列式 矩阵的秩

今天学习一下矩阵的基本算法 高斯消元是解线性方程组的有力工具. 基本思想是通过将增广矩阵经过行初等变化变成简化阶梯形矩阵. 下面采用的是列主元高斯消元法,复杂度为O(n^3). 很容易根据高斯消元法的过程得出行列式和秩的算法. 代码: /********************************************************* * ------------------ * * author AbyssalFish * ***************************

[spoj104][Highways] (生成树计数+矩阵树定理+高斯消元)

In some countries building highways takes a lot of time... Maybe that's because there are many possiblities to construct a network of highways and engineers can't make up their minds which one to choose. Suppose we have a list of cities that can be c

【bzoj1778】[Usaco2010 Hol]Dotp 驱逐猪猡 矩阵乘法+概率dp+高斯消元

题目描述 奶牛们建立了一个随机化的臭气炸弹来驱逐猪猡.猪猡的文明包含1到N (2 <= N <= 300)一共N个猪城.这些城市由M (1 <= M <= 44,850)条由两个不同端点A_j和B_j (1 <= A_j<= N; 1 <= B_j <= N)表示的双向道路连接.保证城市1至少连接一个其它的城市.一开始臭气弹会被放在城市1.每个小时(包括第一个小时),它有P/Q (1 <= P <=1,000,000; 1 <= Q <

BZOJ_1778_[Usaco2010_Hol]_Dotp_驱逐猪猡_(期望动态规划+高斯消元+矩阵)

描述 http://www.lydsy.com/JudgeOnline/problem.php?id=1778 炸弹从1出发,有\(\frac{P}{Q}\)的概率爆炸,如果不爆炸,等概率移动到连通的点.求在每个点爆炸的概率. 分析 我们构造一个\(n\)行\(n\)列的矩阵\(f\),其中\(f[i][j]\)表示从\(i\)移动到\(j\)的概率. 那么\(f^2\)中\(f^2[i][j]\)是\(f[i][k]\times{f[k][j]}\)得来的,也就是\(i\to{k}\to{j}

hdu4305Lightning 生成树计数(基尔霍夫矩阵)+高斯消元+逆元

题目:http://acm.hdu.edu.cn/showproblem.php?pid=4305 题意:比较裸的生成树计数问题. 如何处理生成树计数问题? 基尔霍夫矩阵: if i==j  Kir[i][j] = i的度数 if i!=j   Kir[i][j] = i到j的平行边的个数的负数 即,基尔霍夫矩阵 = 度数矩阵 - 邻接矩阵 将基尔霍夫矩阵删去第i行和第i列,余下i-1阶的行列式的值即为生成树个数.(证明略) 求行列式的值可以将行列式转为上三角阵,求对角线上的积即为行列式的值.

【弱校胡策】2016.4.14 (bzoj2164)最短路+状压DP+矩阵乘法+高斯消元+树链剖分+线段树+背包DP

cyyz&qhyz&lwyz&gryz弱校胡策 命题人:cyyz ws_fqk T3暴力写挫了 50+10+0滚粗辣! 奇妙的约会(appointment.cpp/c/pas) [问题描述] DQS和sxb在网上结识后成为了非常好的朋友,并且都有着惊人 的OI水平.在NOI2333的比赛中,两人均拿到了金牌,并保送进入 HU/PKU.于是两人决定在这喜大普奔的时刻进行面基. NOI2333参赛选手众多,所以安排了n个考点,DQS在1号考点, 而sxb在n号考点.由于是举办全国性赛事

【Luogu】P3317重建(高斯消元+矩阵树定理)

题目链接 因为这个专门跑去学了矩阵树定理和高斯消元qwq 不过不是很懂.所以这里只放题解 玫葵之蝶的题解 某未知dalao的矩阵树定理 代码 #include<cstdio> #include<cstdlib> #include<cctype> #include<algorithm> #include<cstring> #include<cmath> #define eps 1e-8 #define maxn 100 using na