树形DP+(分组背包||二叉树,一般树,森林之间的转换)codevs 1378 选课

codevs 1378 选课

时间限制: 1 s

空间限制: 128000 KB

题目等级 : 钻石 Diamond

题目描述 Description

学校实行学分制。每门的必修课都有固定的学分,同时还必须获得相应的选修课程学分。学校开设了N(N<300)门的选修课程,每个学生可选课程的数量M是给定的。学生选修了这M门课并考核通过就能获得相应的学分。

  在选修课程中,有些课程可以直接选修,有些课程需要一定的基础知识,必须在选了其它的一些课程的基础上才能选修。例如《Frontpage》必须在选修了《Windows操作基础》之后才能选修。我们称《Windows操作基础》是《Frontpage》的先修课。每门课的直接先修课最多只有一门。两门课也可能存在相同的先修课。每门课都有一个课号,依次为1,2,3,…。 例如:

【详见图片】
表中1是2的先修课,2是3、4的先修课。如果要选3,那么1和2都一定已被选修过。   你的任务是为自己确定一个选课方案,使得你能得到的学分最多,并且必须满足先修课优先的原则。假定课程之间不存在时间上的冲突。

输入描述 Input Description

输入文件的第一行包括两个整数N、M(中间用一个空格隔开)其中1≤N≤300,1≤M≤N。 
以下N行每行代表一门课。课号依次为1,2,…,N。每行有两个数(用一个空格隔开),第一个数为这门课先修课的课号(若不存在先修课则该项为0),第二个数为这门课的学分。学分是不超过10的正整数。

输出描述 Output Description

输出文件只有一个数,实际所选课程的学分总数。

样例输入 Sample Input

7 4
2 2
0 1
0 4
2 1
7 1
7 6
2 2

样例输出 Sample Output

13

数据范围及提示 Data Size & Hint

各个测试点1s

分类标签 Tags

动态规划

代码一:“树形DP+分组背包”法

基本思路:因为这个题目与“金明的预算方案”相比,多了一个主件还会有主件的条件,那么我们就先把最小的主件和附件生成背包,沿着树枝向上传递,把这个小背包作为大背包的物品

#define N 320
#include<iostream>
using namespace std;
#include<cstdio>
#include<cstring>
struct Edge{
    int v,last;
}edge[N*N];
int head[N],w[N];
int f[N][N];
int n,m,t=0;
void add_edge(int u,int v)
{
    t++;
    edge[t].v=v;
    edge[t].last=head[u];
    head[u]=t;
}
void input()
{
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;++i)
    {
        int x;
        scanf("%d%d",&x,&w[i]);
        add_edge(x,i);
    }
}
void dfs(int k)
{//注意虚点0与实点的区别,虚点树的根没有值,最多可以在子树上取到m个点,而对于实点树,他的根节点必须取,因此子树上最多可以取到m-1个点*/
    int flag=1;/*纪录实点虚点的*/
    if(k==0) flag=0;
    for(int i=1;i<=m;++i)
      f[k][i]=w[k];/*先取根节点*/
    for(int l=head[k];l;l=edge[l].last)
    {
         dfs(edge[l].v);/*用子树上形成的背包来向上更新*/
         for(int j=m;j>=flag;--j)
           for(int p=0;p<=j-flag;++p)
           {
               f[k][j]=max(f[k][j],f[k][j-p]+f[edge[l].v][p]);
           }
    }
}
int main()
{
    input();
    dfs(0);
    printf("%d\n",f[0][m]);
    return 0;
}

代码二:“树形DP+二叉树,一般树,森林之间的转换”

#include<iostream>
using namespace std;
#include<cstdio>
#include<cstring>
#define N 321
struct Node{
    int lch,rch,sum;
}node[N]={0};
int n,x,m,w[N]={0};
int f[N][N]={0};
int count[N]={0};
void add(int u,int v)
{/*一般树转为二叉树,“左孩子右兄弟”原则,v是u的孩子,如果v不能做u的左孩子,那就做u左孩子的兄弟,或者u左孩子兄弟的兄弟*/
    if(node[u].lch==0)
    {
        node[u].lch=v;
    }
    else{
        int i=node[u].lch;
        while(node[i].rch) i=node[i].rch;
        node[i].rch=v;
    }
}
int read()
{
    char s;int x=0;
    s=getchar();
    while(s<‘0‘||s>‘9‘) s=getchar();
    while(‘0‘<=s&&s<=‘9‘)
    {
        x=x*10+s-‘0‘;
        s=getchar();
    }
    return x;
}
void input()
{
    n=read();m=read();
    for(int i=1;i<=n;++i)
    {
        x=read();w[i]=read();
        add(x,i);
    }
}
void dfs(int k)
{
    if(node[k].lch) dfs(node[k].lch);/*先处理好孩子*/
    if(node[k].rch) dfs(node[k].rch);
    count[k]=count[node[k].lch]+count[node[k].rch]+1;
    f[k][1]=w[k];/*以防这是叶子节点*/
    for(int i=0;i<=count[node[k].rch];++i)
    {
        f[k][i]=max(f[k][i],f[node[k].rch][i]);/*当前这个点取i个,可以从不包括k只取他的右孩子,也可以包括k取他的右孩子,包含在下面的方程中,这两个方程包含了总共的三种情况*/
        for(int j=0;j<=count[node[k].lch];++j)/*或者是左右孩子一起取,那么就要取到当前k节点了*/
          f[k][i+j+1]=max(f[k][i+j+1],f[node[k].rch][i]+w[k]+f[node[k].lch][j]);
    }
}
int main()
{
    input();
    dfs(node[0].lch);
    cout<<f[node[0].lch][m]<<endl;/*注意深搜的时候,从0的左孩子开始搜,因为count[node[0].lch]==m,所以不能cout<<count[0][m].而且从0处开始时,dfs中的一些语句都没有意义*/
    /*dfs(0);
    cout<<f[0][m+1]<<endl;*/
    return 0;
}
时间: 2024-10-13 18:04:18

树形DP+(分组背包||二叉树,一般树,森林之间的转换)codevs 1378 选课的相关文章

hdu4003 树形dp+分组背包

http://acm.hdu.edu.cn/showproblem.php?pid=4003 Problem Description Humans have discovered a kind of new metal mineral on Mars which are distributed in point‐like with paths connecting each of them which formed a tree. Now Humans launches k robots on

HDU ACM 4044 GeoDefense -&gt;树形DP+分组背包

题意:地图是一个编号为1-n的节点的树,节点1是敌方基地,其他叶节点是我方基地.敌人基地会出来敌人,为了防止敌人攻进我方基地,我们可以选择造塔.每个节点只能造一个塔,节点i有ki种塔供选择,价值和攻击力为price_i, power_i,攻击力power_i是让敌人经过这个节点时让敌人的HP减少power_i点.因此从敌人基地到我方任意一个基地的路径,这条路径上所有塔的攻击力之和,就是这个基地的抵抗力. 敌人攻击路径不确定,为了保护我方所有基地,需要确定所有基地中抵抗力最低的一个.我方只有数量为

[P1273] 有线电视网 (树形DP+分组背包)

题意:给出一棵树,有边权,只有叶子节点有点权,求一个合法方案(选择走到哪几个叶子节点,且路径上的权值和 <= 要走到的叶子节点的点权和),使得选择的叶子节点数量尽量的多: 解法:树形DP+分组背包: 1.树形DP:这是一棵树,所以叫树形DP: 2.分组背包:在这里主要是运用到了它的思想:我们可以设 f[i][j],表示 i节点选择了 j个叶子节点的费用最大值:假设现在在 x节点,它的下面有 n个叶子节点(不是它的儿子),那么我们就要处理出它选 1,2,3,……,n 个叶子节点的情况,但是由于这是

POJ 2486 Apple Tree 树形DP+分组背包

链接:http://poj.org/problem?id=2486 题意:一棵(苹果)树,树上有N个结点(N<=100),起点是结点1.每个结点上有若干个苹果,我可以进行K步操作(K<=200),每次操作是从当前结点移动到相邻的结点,并且到了相邻的结点以后会吃掉上面的所有苹果并且苹果不再长出来,相邻是指两个结点之间有边相连.问在K步操作之后最多可以吃掉多少个苹果. 思路:刚入手的时候觉得是一般的树形背包问题,dp[i][j]代表的是以i为根的子树中走j个结点所能吃到的苹果数,来进行状态转移,但

HDU-1011 Starship Troopers (树形DP+分组背包)

题目大意:给一棵有根带点权树,并且给出容量.求在不超过容量下的最大权值.前提是选完父节点才能选子节点. 题目分析:树上的分组背包. ps:特判m为0时的情况. 代码如下: # include<iostream> # include<cstdio> # include<vector> # include<cstring> # include<algorithm> using namespace std; const int N=105; const

hdu4044 树形dp+分组背包

http://acm.hdu.edu.cn/showproblem.php?pid=4044 Problem Description Tower defense is a kind of real-time strategy computer games. The goal of tower defense games is to try to stop enemies from reaching your bases by building towers which shoot at them

hdu 1561 树形dp+分组背包

题意:就是给定n个点,每个地点有value[i]的宝物,而且有的宝物必须是另一个宝物取了才能取,问取m个点可以获得的最多宝物价值. 一个子节点就可以返回m个状态,每个状态表示容量为j(j<=m)时选最多的宝物,而一个子节点中只可以选择一个状态进行转移,每个节点有若干个子节点,问题就转换为分组背包,几个子节点就是几个分组背包,体积是选几个地点,价值是宝物价值. 状态转移方程: dp[v][1] = Money[v]; (v为叶子节点)                    dp[v][j] = m

【P2015】二叉苹果树 (树形DP分组背包)

题目描述 有一棵苹果树,如果树枝有分叉,一定是分2叉(就是说没有只有1个儿子的结点) 这棵树共有N个结点(叶子点或者树枝分叉点),编号为1-N,树根编号一定是1. 现在这颗树枝条太多了,需要剪枝.但是一些树枝上长有苹果. 给定需要保留的树枝数量,求出最多能留住多少苹果. 输入输出格式 输入格式: 第1行2个数,N和Q(1<=Q<= N,1<N<=100). N表示树的结点数,Q表示要保留的树枝数量.接下来N-1行描述树枝的信息. 每行3个整数,前两个是它连接的结点的编号.第3个数是

二叉树 树 森林之间的转换

树.森林和二叉树的转换 树转换为二叉树 (1)加线.在所有兄弟结点之间加一条连线. (2)去线.树中的每个结点,只保留它与第一个孩子结点的连线,删除它与其它孩子结点之间的连线. (3)层次调整.以树的根节点为轴心,将整棵树顺时针旋转一定角度,使之结构层次分明.(注意第一个孩子是结点的左孩子,兄弟转换过来的孩子是结点的右孩子) 森林转换为二叉树 (1)把每棵树转换为二叉树. (2)第一棵二叉树不动,从第二棵二叉树开始,依次把后一棵二叉树的根结点作为前一棵二叉树的根结点的右孩子,用线连接起来. 二叉