2048游戏算是一个比较完整的项目,项目中我们需要将游戏过程建模,通过有限状态机将游戏主流程模拟出来如下:
对于游戏的整体代码中,关于矩阵逆转,移动处理逻辑算法初学者可以暂时不关注,重点在于游戏主流程代码,这样可以锻炼初学者的思维,让大家更好的学习!
此外,代码中比较常用的库与类是需要初学者去积累的。
# -*- coding: utf-8 -*- import curses from random import randrange, choice # generate and place new tile from collections import defaultdict #定义按键并将asc码转换为十进制整数 letter_codes = [ord(ch) for ch in ‘WASDRQwasdrq‘] #定义用户的行为 actions = [‘Up‘, ‘Left‘, ‘Down‘, ‘Right‘, ‘Restart‘, ‘Exit‘] #將按键与用户行为关联 形成dict actions_dict = dict(zip(letter_codes, actions * 2)) #阻塞+循环,直到获得用户有效输入才返回对应行为: def get_user_action(keyboard): char = "N" while char not in actions_dict: char = keyboard.getch() return actions_dict[char] #矩阵逆转 初学者可不要在此深究 def transpose(field): return [list(row) for row in zip(*field)] def invert(field): return [row[::-1] for row in field] class GameField(object): def __init__(self, height=4, width=4, win=2048): self.height = height self.width = width self.win_value = 2048 self.score = 0 self.highscore = 0 self.reset() def reset(self): if self.score > self.highscore: self.highscore = self.score self.score = 0 #此行循环打印行和列并赋值为0 类似与9*9乘法表 self.field = [[0 for i in range(self.width)] for j in range(self.height)] self.spawn() self.spawn() #代码主流程,不过感觉并不适合初学者阅读,这个地方大家可以简易的阅读 def move(self, direction): def move_row_left(row): def tighten(row): # squeese non-zero elements together new_row = [i for i in row if i != 0] new_row += [0 for i in range(len(row) - len(new_row))] return new_row def merge(row): pair = False new_row = [] for i in range(len(row)): if pair: new_row.append(2 * row[i]) self.score += 2 * row[i] pair = False else: if i + 1 < len(row) and row[i] == row[i + 1]: pair = True new_row.append(0) else: new_row.append(row[i]) assert len(new_row) == len(row) return new_row return tighten(merge(tighten(row))) moves = {} moves[‘Left‘] = lambda field: [move_row_left(row) for row in field] moves[‘Right‘] = lambda field: invert(moves[‘Left‘](invert(field))) moves[‘Up‘] = lambda field: transpose(moves[‘Left‘](transpose(field))) moves[‘Down‘] = lambda field: transpose(moves[‘Right‘](transpose(field))) if direction in moves: if self.move_is_possible(direction): self.field = moves[direction](self.field) self.spawn() return True else: return False def is_win(self): return any(any(i >= self.win_value for i in row) for row in self.field) def is_gameover(self): return not any(self.move_is_possible(move) for move in actions) def draw(self, screen): help_string1 = ‘(W)Up (S)Down (A)Left (D)Right‘ help_string2 = ‘ (R)Restart (Q)Exit‘ gameover_string = ‘ GAME OVER‘ win_string = ‘ YOU WIN!‘ def cast(string): screen.addstr(string + ‘\n‘) def draw_hor_separator(): line = ‘+‘ + (‘+------‘ * self.width + ‘+‘)[1:] separator = defaultdict(lambda: line) if not hasattr(draw_hor_separator, "counter"): draw_hor_separator.counter = 0 cast(separator[draw_hor_separator.counter]) draw_hor_separator.counter += 1 def draw_row(row): cast(‘‘.join(‘|{: ^5} ‘.format(num) if num > 0 else ‘| ‘ for num in row) + ‘|‘) screen.clear() cast(‘SCORE: ‘ + str(self.score)) if 0 != self.highscore: cast(‘HGHSCORE: ‘ + str(self.highscore)) for row in self.field: draw_hor_separator() draw_row(row) draw_hor_separator() if self.is_win(): cast(win_string) else: if self.is_gameover(): cast(gameover_string) else: cast(help_string1) cast(help_string2) def spawn(self): new_element = 4 if randrange(100) > 89 else 2 (i, j) = choice([(i, j) for i in range(self.width) for j in range(self.height) if self.field[i][j] == 0]) self.field[i][j] = new_element def move_is_possible(self, direction): def row_is_left_movable(row): def change(i): # true if there‘ll be change in i-th tile if row[i] == 0 and row[i + 1] != 0: # Move return True if row[i] != 0 and row[i + 1] == row[i]: # Merge return True return False return any(change(i) for i in range(len(row) - 1)) check = {} check[‘Left‘] = lambda field: any(row_is_left_movable(row) for row in field) check[‘Right‘] = lambda field: check[‘Left‘](invert(field)) check[‘Up‘] = lambda field: check[‘Left‘](transpose(field)) check[‘Down‘] = lambda field: check[‘Right‘](transpose(field)) if direction in check: return check[direction](self.field) else: return False #遊戲实现的主流程思路,重点 def main(stdscr): def init(): # 重置游戏棋盘 game_field.reset() return ‘Game‘ def not_game(state): # 画出 GameOver 或者 Win 的界面 game_field.draw(stdscr) # 读取用户输入得到action,判断是重启游戏还是结束游戏 action = get_user_action(stdscr) responses = defaultdict(lambda: state) # 默认是当前状态,没有行为就会一直在当前界面循环 responses[‘Restart‘], responses[‘Exit‘] = ‘Init‘, ‘Exit‘ # 对应不同的行为转换到不同的状态 return responses[action] def game(): # 画出当前棋盘状态 game_field.draw(stdscr) # 读取用户输入得到action action = get_user_action(stdscr) if action == ‘Restart‘: return ‘Init‘ if action == ‘Exit‘: return ‘Exit‘ if game_field.move(action): # move successful if game_field.is_win(): return ‘Win‘ if game_field.is_gameover(): return ‘Gameover‘ return ‘Game‘ state_actions = { ‘Init‘: init, ‘Win‘: lambda: not_game(‘Win‘), ‘Gameover‘: lambda: not_game(‘Gameover‘), ‘Game‘: game } curses.use_default_colors() game_field = GameField(win=32) state = ‘Init‘ # 状态机开始循环 while state != ‘Exit‘: state = state_actions[state]() #curses 是python 对c中 curses的封装,并没有卵用 curses.wrapper(main)
时间: 2024-10-03 14:01:03