Linux C高级编程——网络编程(3)

Linux网络编程(三)——TCP

宗旨:技术的学习是有限的,分享的精神是无限的。

1、TCP段格式

和UDP协议一样也有源端口号和目的端口号,通讯的双方由IP地址和端口号标识。32位序号、32位确认序号、窗口大小。4位首部长度和IP协议头类似,表示TCP协议头的长度,以4字节为单位,因此TCP协议头最长可以是4x15=60字节,如果没有选项字段, TCP协议头最短20字节。URG、 ACK、 PSH、 RST、 SYN、 FIN是六个控制位,本节稍后将解释SYN、 ACK、 FIN、 RST四个位,其它位的解释从略。16位检验和将TCP协议头和数据都计算在内。

2、通讯时序——“三次握手,四次挥手”

首先客户端主动发起连接、发送请求,然后服务器端响应请求,然后客户端主动关闭连接。两条竖线表示通讯的两端,从上到下表示时间的先后顺序,注意,数据从一端传到网络的另一端也需要时间,所以图中的箭头都是斜的。双方发送的段按时间顺序编号为1-10,各段中的主要信息在箭头上标出,例如段2的箭头上标着SYN, 8000(0), ACK 1001, <mss 1024>,表示该段中的SYN位置1,32位序号是8000,该段不携带有效载荷(数据字节数为0),ACK位置1,32位确认序号是1001,带有一个mss选项值为1024。

建立连接的过程:

1. 客户端发出段1, SYN位表示连接请求。序号是1000,这个序号在网络通讯中用作临时的地址,每发一个数据字节,这个序号要加1,这样在接收端可以根据序号排出数据包的正确顺序,也可以发现丢包的情况,另外,规定SYN位和FIN位也要占一个序号,这次虽然没发数据,但是由于发了SYN位,因此下次再发送应该用序号1001。 mss表示最大段尺寸,如果一个段太大,封装成帧后超过了链路层的最大帧长度,就必须在IP层分片,为了避免这种情况,客户端声明自己的最大段尺寸,建议服务器端发来的段不要超过这个长度。

2. 服务器发出段2,也带有SYN位,同时置ACK位表示确认,确认序号是1001,表示“我接收到序号1000及其以前所有的段,请你下次发送序号为1001的段”,也就是应答了客户端的连接请求,同时也给客户端发出一个连接请求,同时声明最大尺寸为1024。

3. 客户端发出段3,对服务器的连接请求进行应答,确认序号是8001。

客户端和服务器分别给对方发了连接请求,也应答了对方的连接请求,其中服务器的请求和应答在一个段中发出,因此一共有三个段用于建立连接,称为‘‘‘三方握手( three-wayhandshake) ‘‘‘。在建立连接的同时,双方协商了一些信息,例如双方发送序号的初始值、最大段尺寸等。

在TCP通讯中,如果一方收到另一方发来的段,读出其中的目的端口号,发现本机并没有任何进程使用这个端口,就会应答一个包含RST位的段给另一方。

数据传输的过程:

1、客户端发出段4,包含从序号1001开始的20个字节数据。

2、服务器发出段5,确认序号为1021,对序号为1001-1020的数据表示确认收到,同时请求发送序号1021开始的数据,服务器在应答的同时也向客户端发送从序号8001开始的10个字节数据,这称为piggyback。

3、客户端发出段6,对服务器发来的序号为8001-8010的数据表示确认收到,请求发送序号8011开始的数据。

在数据传输过程中, ACK和确认序号是非常重要的,应用程序交给TCP协议发送的数据会暂存在TCP层的发送缓冲区中,发出数据包给对方之后,只有收到对方应答的ACK段才知道该数据包确实发到了对方,可以从发送缓冲区中释放掉了,如果因为网络故障丢失了数据包或者丢失了对方发回的ACK段,经过等待超时后TCP协议自动将发送缓冲区中的数据包重发。

关闭连接的过程:

1. 客户端发出段7, FIN位表示关闭连接的请求。

2. 服务器发出段8,应答客户端的关闭连接请求。

3. 服务器发出段9,其中也包含FIN位,向客户端发送关闭连接请求。4. 客户端发出段10,应答服务器的关闭连接请求。

建立连接的过程是三方握手,而关闭连接通常需要4个段,服务器的应答和关闭连接请求通常不合并在一个段中,因为有连接半关闭的情况,这种情况下客户端关闭连接之后就不能再发送数据给服务器了,但是服务器还可以发送数据给客户端,直到服务器也关闭连接为止。

3、流量控制

如果发送端发送的速度较快,接收端接收到数据后处理的速度较慢,而接收缓冲区的大小是固定的,就会丢失数据。TCP协议通过‘‘‘滑动窗口(SlidingWindow) ‘‘‘机制解决这一问题。

1. 发送端发起连接,声明最大段尺寸是1460,初始序号是0,窗口大小是4K,表示“我的接收缓冲区还有4K字节空闲,你发的数据不要超过4K”。接收端应答连接请求,声明最大段尺寸是1024,初始序号是8000,窗口大小是6K。发送端应答,三方握手结束。

2. 发送端发出段4-9,每个段带1K的数据,发送端根据窗口大小知道接收端的缓冲区满了,因此停止发送数据。

3. 接收端的应用程序提走2K数据,接收缓冲区又有了2K空闲,接收端发出段10,在应答已收到6K数据的同时声明窗口大小为2K。

4. 接收端的应用程序又提走2K数据,接收缓冲区有4K空闲,接收端发出段11,重新声明窗口大小为4K。

5. 发送端发出段12-13,每个段带2K数据,段13同时还包含FIN位。

6. 接收端应答接收到的2K数据( 6145-8192),再加上FIN位占一个序号8193,因此应答序号是8194,连接处于半关闭状态,接收端同时声明窗口大小为2K。

7. 接收端的应用程序提走2K数据,接收端重新声明窗口大小为4K。

8. 接收端的应用程序提走剩下的2K数据,接收缓冲区全空,接收端重新声明窗口大小为6K。

9. 接收端的应用程序在提走全部数据后,决定关闭连接,发出段17包含FIN位,发送端应答,连接完全关闭。

上图在接收端用小方块表示1K数据,实心的小方块表示已接收到的数据,虚线框表示接收缓冲区,因此套在虚线框中的空心小方块表示窗口大小,从图中可以看出,随着应用程序提走数据,虚线框是向右滑动的,因此称为滑动窗口。

发送端是一K一K地发送数据,而接收端的应用程序可以两K两K地提走数据,当然也有可能一次提走3K或6K数据,或者一次只提走几个字节的数据,也就是说,应用程序所看到的数据是一个整体,或说是一个流( stream),在底层通讯中这些数据可能被拆成很多数据包来发送,但是一个数据包有多少字节对应用程序是不可见的,因此TCP协议是面向流的协议。而UDP是面向消息的协议,每个UDP段都是一条消息,应用程序必须以消息为单位提取数据,不能一次提取任意字节的数据,这一点和TCP是很不同的。

时间: 2024-10-03 23:02:36

Linux C高级编程——网络编程(3)的相关文章

python高级之网络编程

python高级之网络编程 本节内容 网络通信概念 socket编程 socket模块一些方法 聊天socket实现 远程执行命令及上传文件 socketserver及其源码分析 1.网络通信概念 说到网络通信,那就不得不说TCP/IP协议簇的OSI七层模型了,这个东西当初在学校都学烂了...(PS:毕竟本人是网络工程专业出身...) 简单介绍下七层模型从底层到上层的顺序:物理层(定义物理设备的各项标准),数据链路层(mac地址等其他东西的封装),网络层(IP包头的的封装),传输层(TCP/UD

Linux程序设计学习笔记----网络编程之网络数据包拆封包与字节顺序大小端

网络数据包的封包与拆包 过程如下: 将数据从一台计算机通过一定的路径发送到另一台计算机.应用层数据通过协议栈发到网络上时,每层协议都要加上一个数据首部(header),称为封装(Encapsulation),如下图所示: 不同的协议层对数据包有不同的称谓,在传输层叫做段(segment),在网络层叫做数据包(packet),在链路层叫做帧(frame).数据封装成帧后发到传输介质上,到达目的主机后每层协议再剥掉相应的首部,最后将应用层数据交给应用程序处理. 上图对应两台计算机在同一网段中的情况,

Linux网络编程------网络编程基础

Socket(套接字),类似文件描述符,三种 1.流式套接字(SOCK_STREAM):可以提供可靠的.面向连接的通讯流,它使用TCP协议.TCP保证了数据传输的正确性和顺序性. 2.数据报套接字(SOCK_DGRAM):定义了一种无连接的服务,数据通过相互独立的报文进行传输,是无序的,并且不保证可靠,无差错,它使用数据报协议(UDP). 3.原始套接字(SOCK_RAW):直接基于IP协议. 网络地址 struct sockaddr用于记录网络地址: struct sockaddr { u_s

Linux C高级编程——网络编程基础(1)

Linux高级编程--BSD socket的网络编程 宗旨:技术的学习是有限的,分享的精神是无限的. 一网络通信基础 TCP/IP协议簇基础:之所以称TCP/IP是一个协议簇,是由于TCP/IP包括TCP .IP.UDP.ICMP等多种协议.下图是OSI模型与TCP/IP模型的对照.TCP/IP将网络划分为4层模型:应用层.传输层.网络层和网络接口层(有些书籍将其分为5层,即网络接口层由链路层和物理层组成) (1)网络接口层:模型的基层.负责数据帧的发送已接收(帧是独立的网络信息传输单元).网络

Linux C高级编程——网络编程(1)

Linux高级编程--BSD socket的网络编程 宗旨:技术的学习是有限的,分享的精神的无限的. 一网络通信基础 TCP/IP协议簇基础:之所以称TCP/IP是一个协议簇,是因为TCP/IP包含TCP .IP.UDP.ICMP等多种协议.下图是OSI模型与TCP/IP模型的对比,TCP/IP将网络划分为4层模型:应用层.传输层.网络层和网络接口层(有些书籍将其分为5层,即网络接口层由链路层和物理层组成) (1)网络接口层:模型的基层,负责数据帧的发送已接收(帧是独立的网络信息传输单元).网络

Linux C高级编程——网络编程之以太网(2)

Linux网络编程--以太网 宗旨:技术的学习是有限的,分享的精神是无限的. 1.以太网帧格式 源地址和目的地址是指网卡的硬件地址(也叫MAC地址),长度是48位,是在网卡出厂时固化的.用ifconfig命令查看," 硬件地址 00:0c:29:cf:7e:1a " .协议字段有三种值,分别相应IP. ARP. RARP.帧末尾是CRC校验码. ARP和RARP数据包的长度不够46字节.要在后面补填充位. 最大值1500称为以太网的最大传输单元( MTU),不同的网络类型有不同的MTU

linux服务端的网络编程

常见的Linux服务端的开发模型有多进程.多线程和IO复用,即select.poll和epoll三种方式,其中现在广泛使用的IO模型主要epoll,关于该模型的性能相较于select和poll要好不少,本文也主要讨论该模型而忽略另外两种IO复用模型. 多线程相较于多进程开销比较小,但是要主要主线程往子线程传递数据的时候要注意变量互斥访问来保证线程安全. epoll模型在Linux2.6内核中引入的,改进了select中的一些明显设计上的缺点,具有更高的效率.主要体现在以下几个方面: 1. epo

linux网络编程--网络编程的基本函数介绍与使用【转】

本文转载自:http://blog.csdn.net/yusiguyuan/article/details/17538499 我们深谙信息交流的价值,那网络中进程之间如何通信,如我们每天打开浏览器浏览网页时,浏览器的进程怎么与web服务器通信的?当你用QQ聊天时,QQ进程怎么与服务器或你好友所在的QQ进程通信?这些都得靠socket?那什么是socket?socket的类型有哪些?还有socket的基本函数,这些都是本文想介绍的.本文的主要内容如下: 1.网络中进程之间如何通信? 2.Socke

Linux下的socket网络编程

linux 网络编程是通过socket(套接字)接口实现,Socket是一种文件描述符,socket起源于UNIX,在Unix一切皆文件哲学的思想下,socket是一种"打开-读/写-关闭"模式的实现,服务器和客户端各自维护一个"文件",在建立连接打开后,可以向自己文件写入内容供对方读取或者读取对方内容,通讯结束时关闭文件. socket 类型 常见的socket有3种类型如下.     (1)流式socket(SOCK_STREAM )     流式套接字提供可靠