HDU 4845 拯救大兵瑞恩(分层图状压BFS)

拯救大兵瑞恩

Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 264    Accepted Submission(s): 106

Problem Description

   1944年,特种兵麦克接到国防部的命令,要求立即赶赴太平洋上的一个孤岛,营救被敌军俘虏的大兵瑞恩。瑞恩被关押在一个迷宫里,迷宫地形复杂,但是幸好麦克得到了迷宫的地形图。
   迷宫的外形是一个长方形,其在南北方向被划分为N行,在东西方向被划分为M列,于是整个迷宫被划分为N*M个单元。我们用一个有序数对(单元的行号,单元的列号)来表示单元位置。南北或东西方向相邻的两个单元之间可以互通,或者存在一扇锁着的门,又或者存在一堵不可逾越的墙。迷宫中有一些单元存放着钥匙,并且所有的门被分为P类,打开同一类的门的钥匙相同,打开不同类的门的钥匙不同。
   大兵瑞恩被关押在迷宫的东南角,即(N,M)单元里,并已经昏迷。迷宫只有一个入口,在西北角,也就是说,麦克可以直接进入(1,1)单元。另外,麦克从一个单元移动到另一个相邻单元的时间为1,拿取所在单元的钥匙的时间以及用钥匙开门的时间忽略不计。
   你的任务是帮助麦克以最快的方式抵达瑞恩所在单元,营救大兵瑞恩。

Input

有多组数据对于每一组数据来说:
第一行是三个整数,依次表示N,M,P的值;
第二行是一个整数K,表示迷宫中门和墙的总个数;
第I+2行(1<=I<=K),有5个整数,依次为Xi1,Yi1,Xi2,Yi2,Gi:
当Gi>=1时,表示(Xi1,Yi1)单元与(Xi2,Yi2)单元之间有一扇第Gi类的门,当Gi=0时,表示(Xi1,Yi1)单元与(Xi2,Yi2)单元之间有一堵不可逾越的墙;
(其中,|Xi1-Xi2|+|Yi1-Yi2|=1,0<=Gi<=P)
第K+3行是一个整数S,表示迷宫中存放的钥匙总数;
第K+3+J行(1<=J<=S),有3个整数,依次为Xi1,Yi1,Qi:表示第J把钥匙存放在(Xi1,Yi1)单元里,并且第J把钥匙是用来开启第Qi类门的。(其中1<=Qi<=P)
注意:输入数据中同一行各相邻整数之间用一个空格分隔。

参数设定:
3<=N,M<=15;
1<=P<=10;

Output

对于每一组数据,输出一行,只包含一个整数T,表示麦克营救到大兵瑞恩的最短时间的值,若不存在可行的营救方案则输出-1。

Sample Input

4 4 9

9

1 2 1 3 2

1 2 2 2 0

2 1 2 2 0

2 1 3 1 0

2 3 3 3 0

2 4 3 4 1

3 2 3 3 0

3 3 4 3 0

4 3 4 4 0

2

2 1 2

4 2 1

Sample Output

14

题目链接:HDU 4845

很显然用三元组$(x,y,state)$表示当前x、y坐标,获取的钥匙情况,而且这样是可以唯一确定状态的,然后钥匙获取情况用状态压缩表示即可

代码:

#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define LC(x) (x<<1)
#define RC(x) ((x<<1)+1)
#define MID(x,y) ((x+y)>>1)
#define fin(name) freopen(name,"r",stdin)
#define fout(name) freopen(name,"w",stdout)
#define CLR(arr,val) memset(arr,val,sizeof(arr))
#define FAST_IO ios::sync_with_stdio(false);cin.tie(0);
typedef pair<int, int> pii;
typedef long long LL;
const double PI = acos(-1.0);
const int N = 16;
struct info
{
	int x, y;
	int keyst, step;
	info() {}
	info(int _x, int _y, int _keyst, int _step): x(_x), y(_y), keyst(_keyst), step(_step) {}
};
int dir[4][2] = {{1, 0}, {0, 1}, { -1, 0}, {0, -1}};
int door[N][N][N][N];
int key[N][N];
int d[N][N][1 << 11];
bool vis[N][N][1 << 11];
int n, m, p, k, s;

void init()
{
	CLR(door, 0);
	CLR(key, 0);
	CLR(d, INF);
	CLR(vis, false);
}
inline bool check(const int &x, const int &y)
{
	return x >= 1 && x <= n && y >= 1 && y <= m;
}
void bfs()
{
	queue<info>Q;
	info S(1, 1, 0 | key[1][1], 0);
	Q.push(S);
	vis[S.x][S.y][S.keyst] = true;
	d[S.x][S.y][S.keyst] = 1;
	while (!Q.empty())
	{
		info u = Q.front();
		Q.pop();
		for (int i = 0; i < 4; ++i)
		{
			int vx = u.x + dir[i][0];
			int vy = u.y + dir[i][1];
			if (!check(vx, vy))
				continue;
			int need = door[u.x][u.y][vx][vy];
			if (need == -1)
				continue;
			if ((need == 0 || (u.keyst & (1 << need))))
			{
				int vkeyst = u.keyst | (key[vx][vy]);
				if (!vis[vx][vy][vkeyst])
				{
					vis[vx][vy][vkeyst] = true;
					d[vx][vy][vkeyst] = u.step + 1;
					Q.push(info(vx, vy, vkeyst, d[vx][vy][vkeyst]));
				}
			}
		}
	}
}
int main(void)
{
	int i;
	while (~scanf("%d%d%d", &n, &m, &p))
	{
		init();
		scanf("%d", &k);
		for (i = 0; i < k; ++i)
		{
			int x1, x2, y1, y2, g;
			scanf("%d%d%d%d%d", &x1, &y1, &x2, &y2, &g);
			if (!g)
				door[x1][y1][x2][y2] = door[x2][y2][x1][y1] = -1;
			else
				door[x1][y1][x2][y2] = door[x2][y2][x1][y1] = g;
		}
		scanf("%d", &s);
		for (i = 0; i < s; ++i)
		{
			int x1, y1, qi;
			scanf("%d%d%d", &x1, &y1, &qi);
			key[x1][y1] |= (1 << qi);
		}
		bfs();
		int ans = INF;
		int Alst = (1 << (p + 1));
		for (i = 0; i < Alst; ++i)
			if (d[n][m][i] < ans)
				ans = d[n][m][i];
		printf("%d\n", ans == INF ? -1 : ans);
	}
	return 0;
}
时间: 2024-08-24 06:49:27

HDU 4845 拯救大兵瑞恩(分层图状压BFS)的相关文章

HDU 4012 Paint on a Wall(状压+bfs)

Paint on a Wall Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65768/65768 K (Java/Others)Total Submission(s): 830    Accepted Submission(s): 325 Problem Description Annie wants to paint her wall to an expected pattern. The wall can be repr

hdu 1429 状压bfs

#include <iostream> #include <cstring> #include <string> #include <cstdio> #include <cmath> #include <algorithm> #include <vector> #include <queue> #include <map> #define inf 0x3f3f3f3f #define ll __in

HDU 4856 Tunnels (最短路+状压DP)

题意:给你N*N的网格,'.'表示可以走,'#'表示不能走,m条管道,每条管道有起点和终点坐标, Bob每次可以走到相邻的网格花费1s,问Bob走完m条管道要花多少时间:Bob在管道内不计算时间 即计算Bob从管道 i 的出口走到管道 j 的入口的时间Dis(e[i],s[j])的最小和,起点可以任意: 思路:看了题解说是状态压缩DP然后深入理解了下. 首先算出d[e[i]][s[j]]的最短距离,不能到达为-1: dp[i][j] : 表示以 j 为起点状态为 i 的最小值.其中 i 是用十进

HDU 5094 状压BFS

给出n*m矩阵 给出k个障碍,两坐标之间存在墙或门,门最多10种, 给出s个钥匙位置及编号,相应的钥匙开相应的门 状压BFS即可,注意有可能同一个位置有多个门或者多个钥匙 #include "stdio.h" #include "string.h" #include "queue" using namespace std; int b[]={1,2,4,8,16,32,64,128,256,512,1024,2048}; int dir[4][2

[GDOI2015]推箱子(状压bfs)

[GDOI2015]推箱子(状压bfs) 题面 题面过长,略 分析 观察到$m \times m =64 \(,那么可以把箱子的01状态压到一个```unsigned long long```里面 然后对于地图上的每一个点\)(x,y)\(,预处理出左上角在\)(x,y)\(,边长为\)m\(的正方形的01状态.如果这个状态和箱子的状态按位与的结果为0,那么就说明箱子可以通过. 然后发现这类似一个分层图上的最短路问题,直接BFS即可.状态\)dist[x][y][k]\(表示箱子左上角在\)(x

hdu 4845 状压bfs(分层思想)

拯救大兵瑞恩 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submission(s): 255    Accepted Submission(s): 99 Problem Description 1944年,特种兵麦克接到国防部的命令,要求立即赶赴太平洋上的一个孤岛,营救被敌军俘虏的大兵瑞恩.瑞恩被关押在一个迷宫里,迷宫地形复杂,但是幸好麦克得到了迷宫的地形图.

HDU 4309 Seikimatsu Occult Tonneru 网络流+状压

题目链接:点击打开链接 题意: 题意:给出一张N(N<=100)个点,M(M<=1000条)边的有向图.每个点上都有一些人.每条边有4个属性(u,v,w,p).这些边分为三种:(1)p<0时,表示这条边是隧道,这条隧道从u连向v,虽然如果想通过这条隧道的话没有流量限制,但可以最多只容纳w人;(2)p=0时,这条边是道路,由u连向v,通过没有流量限制;(3)p>0时,表示这条边是古老的桥,u连向v,如果不修这座桥,则只能通过1人,但是如果花费w的费用修桥的话,则通过这座桥的流量便没有

HDU 1074:Doing Homework(状压DP)

http://acm.hdu.edu.cn/showproblem.php?pid=1074 Doing Homework Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submission(s): 7704    Accepted Submission(s): 3484 Problem Description Ignatius has just come bac

HDU 5067 Harry And Dig Machine(状压DP)(TSP问题)

题目地址:pid=5067">HDU 5067 经典的TSP旅行商问题模型. 状压DP. 先分别预处理出来每两个石子堆的距离.然后将题目转化成10个城市每一个城市至少经过一次的最短时间模型.然后简单的状压DP就可以. 代码例如以下: #include <iostream> #include <cstdio> #include <string> #include <cstring> #include <stdlib.h> #incl