Largest Point
Time Limit: 1500/1000 MS (Java/Others) Memory Limit: 65535/32768 K (Java/Others)
Total Submission(s): 527 Accepted Submission(s): 228
Problem Description
Given the sequence A with n integers t1,t2,?,tn.
Given the integral coefficients a and b.
The fact that select two elements ti and tj of A and i≠j to
maximize the value of at2i+btj,
becomes the largest point.
Input
An positive integer T,
indicating there are T test
cases.
For each test case, the first line contains three integers corresponding to n (2≤n≤5×106), a (0≤|a|≤106) and b (0≤|b|≤106).
The second line contains n integers t1,t2,?,tn where 0≤|ti|≤106 for 1≤i≤n.
The sum of n for
all cases would not be larger than 5×106.
Output
The output contains exactly T lines.
For each test case, you should output the maximum value of at2i+btj.
Sample Input
2 3 2 1 1 2 3 5 -1 0 -3 -3 0 3 3
Sample Output
Case #1: 20 Case #2: 0
简单题 求a*ti*ti+b*tj(i!=j)的最大值
#include <iostream> #include <cstdio> #include <cstring> #include <stack> #include <queue> #include <map> #include <set> #include <vector> #include <cmath> #include <algorithm> using namespace std; int tz[5000050],tf[5000050]; bool compare(int a,int b) { return a<b; } int main() { int T,tt=1; scanf("%d",&T); while(T--) { int n; long long a,b; int tzlen=0,tflen=0; scanf("%d%lld%lld",&n,&a,&b); for(int i=0; i<n; i++) { int num; scanf("%d",&num); if(num>=0) tz[tzlen++]=num; else tf[tflen++]=-num; } sort(tz,tz+tzlen,compare); sort(tf,tf+tflen,compare); long long Max; if(a>=0&&b>=0) { Max=a*tz[tzlen-1]*tz[tzlen-1]+b*tz[tzlen-2]; Max=max(Max,a*tz[tzlen-2]*tz[tzlen-2]+b*tz[tzlen-1]); Max=max(Max,a*tf[tflen-1]*tf[tflen-1]+b*tz[tzlen-1]); }else if(a>=0&&b<0) { Max=-b*tf[tflen-1]+a*tz[tzlen-1]*tz[tzlen-1]; Max=max(Max,-b*tf[tflen-1]+a*tf[tflen-2]*tf[tflen-2]); Max=max(Max,-b*tf[tflen-2]+a*tf[tflen-1]*tf[tflen-1]); }else if(a<0&&b>=0) { Max=a*tz[0]*tz[0]+b*tz[tzlen-1]; Max=max(Max,a*tf[0]*tf[0]+b*tz[tzlen-1]); }else { Max=-b*tf[tflen-1]+a*tz[0]*tz[0]; Max=max(Max,-b*tf[tflen-1]+a*tf[0]*tf[0]); } printf("Case #%d: %lld\n",tt++,Max); } }
版权声明:本文为博主原创文章,未经博主允许不得转载。