求凸多边形内一点距离边最远。
做法:二分+半平面交判定。
二分距离,每次让每条边向内推进d,用半平面交判定一下是否有核。
本想自己写一个向内推进。。仔细一看发现自己的平面交模板上自带。。
1 #include <iostream> 2 #include<cstdio> 3 #include<cstring> 4 #include<algorithm> 5 #include<stdlib.h> 6 #include<vector> 7 #include<cmath> 8 #include<queue> 9 #include<set> 10 using namespace std; 11 #define N 100000 12 #define LL long long 13 #define INF 0xfffffff 14 const double eps = 1e-8; 15 const double pi = acos(-1.0); 16 const double inf = ~0u>>2; 17 const int MAXN=1550; 18 int m; 19 double r; 20 int cCnt,curCnt;//此时cCnt为最终切割得到的多边形的顶点数、暂存顶点个数 21 struct point 22 { 23 double x,y; 24 point(double x=0,double y=0):x(x),y(y){} 25 }; 26 point points[MAXN],p[MAXN],q[MAXN];//读入的多边形的顶点(顺时针)、p为存放最终切割得到的多边形顶点的数组、暂存核的顶点 27 void getline(point x,point y,double &a,double &b,double &c) //两点x、y确定一条直线a、b、c为其系数 28 { 29 a = y.y - x.y; 30 b = x.x - y.x; 31 c = y.x * x.y - x.x * y.y; 32 } 33 double dis(point a,point b) 34 { 35 return sqrt((a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y)); 36 } 37 void initial() 38 { 39 for(int i = 1; i <= m; ++i)p[i] = points[i]; 40 p[m+1] = p[1]; 41 p[0] = p[m]; 42 cCnt = m;//cCnt为最终切割得到的多边形的顶点数,将其初始化为多边形的顶点的个数 43 } 44 point intersect(point x,point y,double a,double b,double c) //求x、y形成的直线与已知直线a、b、c、的交点 45 { 46 double u = fabs(a * x.x + b * x.y + c); 47 double v = fabs(a * y.x + b * y.y + c); 48 point pt; 49 pt.x=(x.x * v + y.x * u) / (u + v); 50 pt.y=(x.y * v + y.y * u) / (u + v); 51 return pt; 52 } 53 void cut(double a,double b ,double c) 54 { 55 curCnt = 0; 56 for(int i = 1; i <= cCnt; ++i) 57 { 58 if(a*p[i].x + b*p[i].y + c >= 0)q[++curCnt] = p[i];// c由于精度问题,可能会偏小,所以有些点本应在右侧而没在, 59 //故应该接着判断 60 else 61 { 62 if(a*p[i-1].x + b*p[i-1].y + c > 0) //如果p[i-1]在直线的右侧的话, 63 { 64 //则将p[i],p[i-1]形成的直线与已知直线的交点作为核的一个顶点(这样的话,由于精度的问题,核的面积可能会有所减少) 65 q[++curCnt] = intersect(p[i],p[i-1],a,b,c); 66 } 67 if(a*p[i+1].x + b*p[i+1].y + c > 0) //原理同上 68 { 69 q[++curCnt] = intersect(p[i],p[i+1],a,b,c); 70 } 71 } 72 } 73 for(int i = 1; i <= curCnt; ++i)p[i] = q[i];//将q中暂存的核的顶点转移到p中 74 p[curCnt+1] = q[1]; 75 p[0] = p[curCnt]; 76 cCnt = curCnt; 77 } 78 int solve(double r) 79 { 80 //注意:默认点是顺时针,如果题目不是顺时针,规整化方向 81 initial(); 82 // for(int i = 1; i <= m; ++i) 83 // { 84 // double a,b,c; 85 // getline(points[i],points[i+1],a,b,c); 86 // cut(a,b,c); 87 // } 88 89 //如果要向内推进r,用该部分代替上个函数 90 for(int i = 1; i <= m; ++i){ 91 point ta, tb, tt; 92 tt.x = points[i+1].y - points[i].y; 93 tt.y = points[i].x - points[i+1].x; 94 double k = r / sqrt(tt.x * tt.x + tt.y * tt.y); 95 tt.x = tt.x * k; 96 tt.y = tt.y * k; 97 ta.x = points[i].x + tt.x; 98 ta.y = points[i].y + tt.y; 99 tb.x = points[i+1].x + tt.x; 100 tb.y = points[i+1].y + tt.y; 101 double a,b,c; 102 getline(ta,tb,a,b,c); 103 cut(a,b,c); 104 } 105 //多边形核的面积 106 // double area = 0; 107 // for(int i = 1; i <= curCnt; ++i) 108 // area += p[i].x * p[i + 1].y - p[i + 1].x * p[i].y; 109 // area = fabs(area / 2.0); 110 // printf("%.2f\n",area); 111 if(curCnt) return 1; 112 return 0; 113 114 } 115 void GuiZhengHua(){ 116 //规整化方向,逆时针变顺时针,顺时针变逆时针 117 for(int i = 1; i < (m+1)/2; i ++) 118 swap(points[i], points[m-i]); 119 } 120 //void change(double d) 121 //{ 122 // int i; 123 // for(i = 1; i <= m ;i++) 124 // { 125 // double len = dis(p[i],points[i+1]); 126 // double a = points[i+1].y-points[i].y; 127 // double b = points[i].x-points[i+1].x; 128 // double cos = a/len; 129 // double sin = b/len; 130 // points[i] = point(points[i].x+cos*d,points[i].y+sin*d); 131 // points[i+1] = point(points[i+1].x+cos*d,points[i+1].y+sin*d); 132 // } 133 //} 134 int main() 135 { 136 int i; 137 while(scanf("%d",&m)&&m) 138 { 139 for(i = 1 ; i<=m; i++) 140 scanf("%lf%lf",&points[i].x,&points[i].y); 141 GuiZhengHua(); 142 points[m+1] = points[1]; 143 double rig = INF,lef = 0,mid; 144 while(rig-lef>eps) 145 { 146 mid = (rig+lef)/2.0; 147 //change(mid); 148 if(solve(mid)) 149 lef = mid; 150 else rig = mid; 151 } 152 printf("%.6f\n",lef); 153 } 154 return 0; 155 }
poj3525Most Distant Point from the Sea(半平面交)
时间: 2025-01-11 02:29:32