LCA最近公共祖先

Nearest Common Ancestors

Description

A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:

In the figure, each node is labeled with an integer from {1,
2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node
y if node x is in the path between the root and node y. For example,
node 4 is an ancestor of node 16. Node 10 is also an ancestor of node
16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of
node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6,
and 7 are the ancestors of node 7. A node x is called a common ancestor
of two different nodes y and z if node x is an ancestor of node y and an
ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of
nodes 16 and 7. A node x is called the nearest common ancestor of nodes y
and z if x is a common ancestor of y and z and nearest to y and z among
their common ancestors. Hence, the nearest common ancestor of nodes 16
and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.

For other examples, the nearest common ancestor of nodes 2 and 3 is
node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and
the nearest common ancestor of nodes 4 and 12 is node 4. In the last
example, if y is an ancestor of z, then the nearest common ancestor of y
and z is y.

Write a program that finds the nearest common ancestor of two distinct nodes in a tree.

Input

The
input consists of T test cases. The number of test cases (T) is given in
the first line of the input file. Each test case starts with a line
containing an integer N , the number of nodes in a tree,
2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N.
Each of the next N -1 lines contains a pair of integers that represent
an edge --the first integer is the parent node of the second integer.
Note that a tree with N nodes has exactly N - 1 edges. The last line of
each test case contains two distinct integers whose nearest common
ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5

Sample Output

4
3

给定n个定点,和n-1个边,其中一个是根节点,求每个点的最近公共祖先。LCA模板题:
 1 #include <iostream>
 2 #include <stdio.h>
 3 #include <string.h>
 4 #include <vector>
 5 using namespace std;
 6 const int N = 1e4+5;
 7 vector<int> ve[N];
 8 int ans, pre[N],vis[N];
 9 vector<pair<int,int> > que[N];
10 int find(int x){
11     if(x == pre[x]){
12         return x;
13     }else {
14         pre[x] = find(pre[x]);
15         return pre[x];
16     }
17 }
18 void dfs(int u, int fa){
19     pre[u] = u;
20     vis[u] = 1;
21     for(int i = 0; i < ve[u].size(); i ++){
22         int v = ve[u][i];
23         if(v == fa)continue;
24         dfs(v,u);
25     }
26     for(int i = 0; i < que[u].size(); i ++){
27         int v = que[u][i].first;
28         if(vis[v] == 1){
29             ans = find(v);
30         }
31     }
32     pre[u] = fa;
33 }
34 int main(){
35     int t, n;
36     scanf("%d",&t);
37     while(t--){
38         scanf("%d",&n);
39         int x, y;
40         for(int i = 0; i < n-1; i ++){
41             scanf("%d%d",&x,&y);
42             ve[x].push_back(y);
43             ve[y].push_back(x);
44             vis[y] = 1;
45         }
46         scanf("%d%d",&x,&y);
47         que[x].push_back({y,0});
48         que[y].push_back({x,0});
49         for(int i = 1; i <= n; i ++){
50             if(vis[i] == 0){
51                 memset(vis,0,sizeof(vis));
52                 dfs(i,-1);
53                 break;
54             }
55         }
56         printf("%d\n",ans);
57         for(int i = 0; i < N; i ++){
58             ve[i].clear();
59             que[i].clear();
60         }
61         memset(vis,0,sizeof(vis));
62         memset(pre,0,sizeof(pre));
63     }
64     return 0;
65 }
时间: 2024-10-16 13:56:08

LCA最近公共祖先的相关文章

lca 最近公共祖先

http://poj.org/problem?id=1330 1 #include<cstdio> 2 #include<cstring> 3 #include<algorithm> 4 #define mt(a,b) memset(a,b,sizeof(a)) 5 using namespace std; 6 const int inf=0x3f3f3f3f; 7 class LCA { ///最近公共祖先 build_o(n*logn) query_o(1) 8 t

Codeforces Round #362 (Div. 2) C. Lorenzo Von Matterhorn LCA(最近公共祖先)

C. Lorenzo Von Matterhorn time limit per test 1 second memory limit per test 256 megabytes input standard input output standard output Barney lives in NYC. NYC has infinite number of intersections numbered with positive integers starting from 1. Ther

POJ 1330 LCA最近公共祖先 离线tarjan算法

题意要求一棵树上,两个点的最近公共祖先 即LCA 现学了一下LCA-Tarjan算法,还挺好理解的,这是个离线的算法,先把询问存贮起来,在一遍dfs过程中,找到了对应的询问点,即可输出 原理用了并查集和dfs染色,先dfs到底层开始往上回溯,边并查集合并 一边染色,这样只要询问的两个点均被染色了,就可以输出当前并查集的最高父亲一定是LCA,因为我是从底层层层往上DSU和染色的,要么没被染色,被染色之后,肯定就是当前节点是最近的 #include <iostream> #include <

笔记:LCA最近公共祖先 Tarjan(离线)算法

LCA最近公共祖先 Tarjan他贱(离线)算法的基本思路及其算法实现 本文是网络资料整理或部分转载或部分原创,参考文章如下: https://www.cnblogs.com/JVxie/p/4854719.html http://blog.csdn.net/ywcpig/article/details/52336496 https://baike.baidu.com/item/最近公共祖先/8918834?fr=aladdin 最近公共祖先简称LCA(Lowest Common Ancesto

连通分量模板:tarjan: 求割点 &amp;&amp; 桥 &amp;&amp; 缩点 &amp;&amp; 强连通分量 &amp;&amp; 双连通分量 &amp;&amp; LCA(最近公共祖先)

PS:摘自一不知名的来自大神. 1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个连通块,就称这个点集为割点集合. 3.点连通度:最小割点集合中的顶点数. 4.割边(桥):删掉它之后,图必然会分裂为两个或两个以上的子图. 5.割边集合:如果有一个边集合,删除这个边集合以后,原图变成多个连通块,就称这个点集为割边集合. 6.边连通度:一个图的边连通度的定义为,最

[转]LCA 最近公共祖先

原文传送门orzJVxie Tarjan(离线)算法的基本思路及其算法实现 首先是最近公共祖先的概念(什么是最近公共祖先?): 在一棵没有环的树上,每个节点肯定有其父亲节点和祖先节点,而最近公共祖先,就是两个节点在这棵树上深度最大的公共的祖先节点. 换句话说,就是两个点在这棵树上距离最近的公共祖先节点. 所以LCA主要是用来处理当两个点仅有唯一一条确定的最短路径时的路径. 有人可能会问:那他本身或者其父亲节点是否可以作为祖先节点呢? 答案是肯定的,很简单,按照人的亲戚观念来说,你的父亲也是你的祖

(转)Tarjan应用:求割点/桥/缩点/强连通分量/双连通分量/LCA(最近公共祖先)

本文转载自:http://hi.baidu.com/lydrainbowcat/item/f8a5ac223e092b52c28d591c 作者提示:在阅读本文之前,请确保您已经理解并掌握了基本的Tarjan算法,不会的请到http://hi.baidu.com/lydrainbowcat/blog/item/42a6862489c98820c89559f3.html阅读.   基本概念:   1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点. 2.割点集合:在一个无向连通图中,如

poj1330 lca 最近公共祖先问题学习笔记

首先推荐两个博客网址: http://dongxicheng.org/structure/lca-rmq/ http://scturtle.is-programmer.com/posts/30055.html [转]tarjan算法的步骤是(当dfs到节点u时): 1 在并查集中建立仅有u的集合,设置该集合的祖先为u 1 对u的每个孩子v:    1.1 tarjan之    1.2 合并v到父节点u的集合,确保集合的祖先是u 2 设置u为已遍历 3 处理关于u的查询,若查询(u,v)中的v已遍

LCA 最近公共祖先 小结

以poj 1330为例,对LCA的3种常用的算法进行介绍,分别为 1. 离线tajian 2. 基于倍增法的LCA 3. 基于RMQ的LCA 1. 离线tajian /*poj 1330 Nearest Common Ancestors 题意: 给出一棵大小为n的树和一个询问(u,v), 问(u,v)的最近公共祖先. 限制: 2 <= n <= 10000 思路: 离线tajian */ #include<iostream> #include<cstdio> #incl