[swustoj 404] 最小代价树

最小代价树(0404)

问题描述

以下方法称为最小代价的字母树:给定一正整数序列,例如:4,1,2,3,在不改变数的位置的条件下把它们相加,并且用括号来标记每一次加法所得到的和。 
例如:((4+1)+ (2+3))=((5)+(5))=10。除去原数不4,1,2,3之外,其余都为中间结果,如5,5,10,将中间结果相加,得到:5+5+10= 20,那么数20称为此数列的一个代价,若得到另一种算法:(4+((1+2)+3))=(4+((3)+3))=(4+(6))=10,数列的另一个代价为:3+6+10=19。若给出N个数,可加N-1对括号,求出此数列的最小代价。 
注:结果范围不超出longint.

输入

第一行为数N(1≤N≤200),第二行为N个正整数,整数之间用空格隔开。

输出

输出仅一行,即为最少代价值。

样例输入

4
4 1 2 3

样例输出

19

简单区间DP、

#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <cmath>
using namespace std;
#define ll long long
#define MOD 1000000007
#define INF 0x3f3f3f3f
#define N 310

int a[N];
int sum[N];
int dp[N][N]; //dp[i][j]表示区间i,j的最小代价

int main()
{
    int n;
    int i,j,k,len;
    while(scanf("%d",&n)!=EOF)
    {
        memset(dp,INF,sizeof(dp));
        for(i=1;i<=n;i++){
            scanf("%d",&a[i]);
            sum[i]=sum[i-1]+a[i];
            dp[i][i]=0;
        }
        for(len=1;len<=n;len++){
            for(i=1;i<=n-len+1;i++){
                j=i+len-1;
                for(k=i;k<j;k++){
                    dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j]+sum[j]-sum[i-1]);
                }
            }
        }
        printf("%d\n",dp[1][n]);
    }
    return 0;
}
时间: 2024-10-13 07:18:06

[swustoj 404] 最小代价树的相关文章

[Swust OJ 404]--最小代价树(动态规划)

题目链接:http://acm.swust.edu.cn/problem/code/745255/ Time limit(ms): 1000 Memory limit(kb): 65535 Description 以下方法称为最小代价的字母树:给定一正整数序列,例如:4,1,2,3,在不改变数的位置的条件下把它们相加,并且用括号来标记每一次加法所得到的和. 例如:((4+1)+ (2+3))=((5)+(5))=10.除去原数不4,1,2,3之外,其余都为中间结果,如5,5,10,将中间结果相加

关于最小代价子母树

第一次尝试写动态规划(Dynamic Planning)= 问题如下: ------------------------------------------------------------------------------------------------------------------------- 最小代价子母树 设有一排数,共n个,例如:22 14 7 13 26 15 11.任意2个相邻的数可以进行归并,归并的代价为该两个数的和,经过不断的归并,最后归为一堆,而全部归并代价的

[2016北京集训试题6]网络战争-[最小割树(网络流)+kd-tree+倍增]

Description A 联邦国有 N 个州,每个州内部都有一个网络系统,有若干条网络线路,连接各个 州内部的城市. 由于 A 国的州与州之间的关系不是太好,每个州都只有首府建立了到别的州的网络.具体来说,每个州的首府都只主动地建立了一条网络线路,连接到距离最近的州的 首府.(欧氏距离.如果有多个,选择标号最小的去连接) B 国探知了 A 国的网络线路分布情况,以及攻陷每条网络线路所需花费的代价,B 国首脑想知道断开 A 国某两个城市之间的网络连接,所需的最少代价.请你计算出来告 诉他. 注:

【模板】最小割树(Gomory-Hu Tree)

传送门 Description 给定一个\(n\)个点\(m\)条边的无向连通图,多次询问两点之间的最小割 两点间的最小割是这样定义的:原图的每条边有一个割断它的代价,你需要用最小的代价使得这两个点不连通 Solution 对于一张无向图,如果 \(s \rightarrow t\) 的最大流是 \(f\),\(s\), \(t\) 所在的割集为 \(S\), \(T\),那么 \(\forall_{x \in S, y \in T}\), \(\operatorname{maxflow}(x

orderby工作原理 + 最小代价取随机数

orderby是如何工作的 场景例子:假设你要查询城市是"杭州"的所有人名字,并且按照姓名排序返回 前1000个人的姓名.年龄. 表结构: ? SQL语句:select city,name,age from t where city="杭州" order by name limit 1000; 全字段排序 Extra字段中Using filesort表示需要排序,mysql会给每个线程分配一块内存用于排序 执行流程 初始化sort_buffffer,确定放入name

最小代价生成树(数据结构)

1 //最小代价生成树 2 //prim算法(稠密图):从与这棵树相连的边中选择最短的边,并将这条边及其所连顶点接入当前树中 3 void Prim(MGraph g,int v0,int &sum) { 4 int lowcost[maxsize],visit[maxsize],v;//lowcost存放当前树到其他顶点的最小权值的顶点 5 int min,k; 6 v=v0; 7 for(int i=0; i<g.n; i++) { 8 lowcost[i]=g.edges[v0][i]

【BZOJ-2229】最小割 最小割树(最大流+分治)

2229: [Zjoi2011]最小割 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 1565  Solved: 560[Submit][Status][Discuss] Description 小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话: “对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分中,则称这个划分是关于s,t的割. 对于带权图来说,将所有顶点处在不同部分的边的

51nod 1125 交换机器的最小代价

基准时间限制:1 秒 空间限制:131072 KB 有N台机器重量各不相等,现在要求把这些机器按照重量排序,重量从左到右依次递增.移动机器只能做交换操作,但交换机器要花费一定的费用,费用的大小就是交换机器重量的和.例如:3 2 1,交换1 3后为递增排序,总的交换代价为4.给出N台机器的重量,求将所有机器变为有序的最小代价.(机器的重量均为正整数) Input 第1行:1个数N,表示机器及房间的数量.(2 <= N <= 50000) 第2 - N + 1行:每行1个数,表示机器的重量Wi.(

括号序列的最小代价

题意 查看原题 这里有一个关于合法的括号序列的问题. 如果插入"+"和"1"到一个括号序列,我们能得到一个正确的数学表达式,我们就认为这个括号序列是合法的.例如,序列"(())()", "()"和"(()(()))"是合法的,但是")(", "(()"和"(()))("是不合法的.我们这有一种仅由"(",")"