/*
ID: neverchanje
PROG:
LANG: C++11
*/
#include<vector>
#include<iostream>
#include<cstring>
#include<string>
#include<algorithm>
#include<cstdio>
#include<set>
#include<queue>
#include<map>
#define INF 0Xfffffffff
#define st_size (1<<18)-1
#define maxn
typedef long long ll;
using namespace std;int c,s;
ll pow[36];int gcd(int a,int b){
if(b==0) return a;
return gcd(b,a%b);
}int main(){
// freopen("a.txt","r",stdin);
// freopen(".out","w",stdout);
while(cin>>c>>s){
if(c==0 && s==0) break;pow[0]=1;
for(int i=1;i<=s;i++) pow[i]=pow[i-1]*c;int res=0;
for(int i=1;i<=s;i++) res+=pow[gcd(s,i)];if(s&1) res += s*pow[s/2+1];
else res += s/2*pow[s/2]+s/2*pow[s/2+1];printf("%d\n",res/(s*2));
}
return 0;
}/*
DESCRIPTION:
项链的旋转是polya定理的基本问题
polya定理:
sum(C(f))/|f| //burnside引理
C(f)=k^m(f) //k为颜色数,m(f)为循环数置换是旋转:
给项链编号0,1,2,...s-1
可连续旋转0,1,2,3,....,s-1个珠子,对应|f|=s个置换
每个置换都有k=c对s=6
转6(即不转) m(f)=6
转1 m(f)=1
转2 m(f)=2
转3 m(f)=3
转4 m(f)=2
转5 m(f)=1
可发现m(f)=gcd(i,s) //i表示转几个
m(f)<=s置换是翻转:
分奇偶判断
*/
poj2409 polya定理经典问题