Number Sequence(KMP,判断子串 模板)

题意:

给两数组,求一个是否是另一个的子数组,若是返回匹配的首位置

分析:

KMP 入门

//扫描字符串A,并更新可以匹配到B的什么位置。
#include <map>
#include <set>
#include <list>
#include <cmath>
#include <queue>
#include <stack>
#include <cstdio>
#include <vector>
#include <string>
#include <cctype>
#include <complex>
#include <cassert>
#include <utility>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <algorithm>
using namespace std;
typedef pair<int,int> PII;
typedef long long ll;
#define lson l,m,rt<<1
#define pi acos(-1.0)
#define rson m+1,r,rt<<11
#define All 1,N,1
#define read freopen("in.txt", "r", stdin)
const ll  INFll = 0x3f3f3f3f3f3f3f3fLL;
const int INF= 0x7ffffff;
int a[1000001],b[10001],next[10001];
void getNext(int m){
    next[0]=-1;
    int i=0,j=-1;
    while(i<m){
        if(j==-1||b[i]==b[j]){
            i++;
            j++;
            if(b[i]==b[j])next[i]=next[j];
            else next[i]=j;
        }
        else j=next[j];
    }
}
void KMP(int n,int m){
    int i=0,j=0;
    while(i<n&&j<m){
        if(a[i]==b[j]||j==-1){
            i++;
            j++;
        }
        else j=next[j];
    }
    if(j==m){
        printf("%d\n",i-m+1);
    }
    else printf("-1\n");
}
int main()
{
    int n,m,t;
    scanf("%d",&t);
    while(t--){
        scanf("%d%d",&n,&m);
        for(int i=0;i<n;++i)
            scanf("%d",&a[i]);
        for(int j=0;j<m;++j)
            scanf("%d",&b[j]);
        if(m>n)printf("-1\n");
        else {
            getNext(m);
            KMP(n,m);
        }
    }
return 0;
}
时间: 2024-11-08 23:54:39

Number Sequence(KMP,判断子串 模板)的相关文章

KMP算法的定义及KMP练手题 HDU 1711 Number Sequence (我的模板代码)

题意:就是要你来找出b数组在a数组中最先匹配的位置,如果没有则输出-1 思路:直接KMP算法(算法具体思想这位牛写的不错http://blog.csdn.net/v_july_v/article/details/7041827) AC代码: #include<cstdio> #include<cstring> #include<stdlib.h> #include<iostream> using namespace std; #define maxn 100

hdu 1711 Number Sequence(KMP)

# include <stdio.h> # include <string.h> # include <algorithm> using namespace std; int n,m,next[10010],a[1000010],b[10010]; void Getnext() { int i=0,j=-1; next[0]=-1; while(i<m) { if(j==-1||b[i]==b[j]) i++,j++,next[i]=j; else j=next[

HDU 1711 Number Sequence KMP题解

KMP查找整数数列,不是查找字符串. 原理是一样的,不过把字符串转换为数列,其他基本上是一样的. #include <stdio.h> #include <string.h> const int MAX_N = 1000001; const int MAX_M = 10001; int strN[MAX_N], strM[MAX_M], next[MAX_M], N, M; void getNext() { memset(next, 0, sizeof(int) * M); for

HDU 1711 Number Sequence(KMP算法)

题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1711 Number Sequence Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 15548    Accepted Submission(s): 6836 Problem Description Given two sequence

Problem A Number Sequence(KMP基础)

A - Number Sequence Time Limit:5000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status Practice HDU 1711 Description Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 100

hdu 1711 Number Sequence KMP 基础题

Number Sequence Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 11691    Accepted Submission(s): 5336 Problem Description Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1],

(KMP 1.1)hdu 1711 Number Sequence(KMP的简单应用——求pattern在text中第一次出现的位置)

题目: Number Sequence Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 12902    Accepted Submission(s): 5845 Problem Description Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1

HDU - 1711 Number Sequence KMP字符串匹配

HDU - 1711 Number Sequence Time Limit: 5000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & %I64u Submit Status Description Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <=

HDU 1711 Number Sequence(KMP模板)

Problem Description: Given two sequences of numbers : a[1], a[2], ...... , a[N], and b[1], b[2], ...... , b[M] (1 <= M <= 10000, 1 <= N <= 1000000). Your task is to find a number K which make a[K] = b[1], a[K + 1] = b[2], ...... , a[K + M - 1]