保护【大数据】应用的步骤和工具

大数据应用的安全性方面往往被忽视或者被视为次要的需求。但是,数据的安全性在数据处理过程有着十分巨大的影响。本文将介绍一些保护大数据应用的步骤和工具。

  随着大数据在不同的领域蔓延,安全方面受到越来越多的关注。以前,我们使用具有中心控制的安全系统,但这并不足以保护你的应用程序免受入侵。大数据带来了另外一些安全关切问题,与正常的应用程序有很大不同。

  在当今世界,安全性相关的探索非常困难,前进方向也难以界定。整个软件系统中实现合适的端至端安全系统是非常昂贵的。总有一个突破安全防护的可能性存在,无论你遵循什么样的政策或制度都是一样。企业进行大数据项目时应制定相应的计划,根据自己的预算和政策,采用最现代化新式安全措施。

  在大数据环境中的安全风险

  大数据时代出现了数据量,数据速率和数据种类的显着增长,另外云计算模式下,移动应用程序和其他应用程序接连增长。通过不同的系统、应用和环境,数据从一端流向另一端。这种数据爆炸对业务发展洞察力提供了有意义帮助,但它也把商业数据暴露给了各种系统,流程和相关人员。由于庞大的数据量在不同的协作系统进行存储,处理,分析,总会存在安全漏洞。

大数据培训:从不同的源和不同类型的商业智能工具采集出来以用于分析,并获得有意义的信息。该信息被决策者访问和使用。有时候数据也可用于协作。用于协作和处理的工具也有安全性限制。所以,总有暴露敏感数据/内容的概率。一旦大数据的值元素被确定,它就可以被访问,更新或甚至由用户改变。这可能会导致对企业造成严重的安全问题和威胁。

  先进的安全措施,可以确保在协作环境中的信息安全。涉及大数据的企业需要在控制和平衡业务需求与数据安全防护之间做到更加精确。以下是关于保护数据的一些建议:

  将大数据分割成小数据:以这种方式,系统将能够更好地处理数据的数量,速度和种类。其结果,企业也将能够更快和更准确进行商业决策。

  识别信息的适用范围:企业需要识别参与此次合作的员工,合作伙伴,供应商,或任何其他第三方,另外也要识别沟通渠道。这有助于给出关于合作环境和利益相关者的详细思路。

  部署数据控制:数据控件都部署在非常重要战略位置。这将确保数据的保护与协作。

  在云计算和移动环境的控制部署:云和移动合作是任何应用程序及其部署的重要组成部分,也是风险最高的区域之一。企业需要了解和识别数据是如何在云计算和移动环境中实现共享。

  大数据安全工具

  在过去几年中,大多数企业采用单一的软件供应商和单个数据库(SAP,Oracle ,PeopleSoft等)为整个企业服务。其结果是,安全性问题更加明显并易于管理。但在目前情况下,我们有大数据,云计算,移动设备等等,系统中的安全漏洞的数量是未知的,并且安全漏洞的可能性要高得多。

  在最近的信息安全发展中,也有许多软件包和供应商可用于加强信息安全实践。对于大数据边界安全策略与其他系统类似,所以在这部分中,我们将只讨论’处于网络内部“ 的工具。

  监控和记录:监视和记录一切是检测未授权活动的最佳策略。一些日志系统,如系统日志(Linux),事件日志(Windows)可以被有效地利用。SNMP对记录网络事件非常有用。也有可供日志汇总不同的软件包,并将其存储在一个中央位置进行分析。这些被称为安全信息和事件管理软件(SIEM)包。

  分析和审计:SIEM包的主要功能是自动检测未经授权的活动,并产生警告。但是,所有SIEM软件需要配置才能正常工作。建议使用预配置SIEM包并时常更新他们,这样能够通过日志分析,找出安全漏洞。最新的SIEM包LogRhythm,Q1实验室(IBM),McAfee的Splunk等

  身份管理:身份和访问管理(IAM)对于大数据保护来说是非常重要的,。因为数据是通过使用不同的信道被员工/承包商访问,这些信道包括移动设备,SAAS模式,或其他服务。身份可以确定是谁正在对敏感数据进行访问,考虑“身份”作为新的安全尺度是非常重要的,不应只是专注于敏感数据的物理位置。身份管理是绝对有必要考虑的工具集合,将有助于我们应对周边发生的故障。

  掩蔽数据:数据掩蔽是保护数据安全的另一种方式。这些数据可以通过加密或断词被屏蔽。一些厂商还要求他们的数据屏蔽工具不遵循加密和标记化,但能够动态地执行整个屏蔽。

  应用安全:最后一步是确保访问敏感信息的大数据应用安全性。这是非常关键的,因为大部分流行工具构建时并没有考虑安全因素。最近,大多数的大数据工具在安全方面有了显着改善。最重要的两个因素是“权限粒度级别’和’数据加密”。Hadoop的最新版本将支持新的安全功能,可能解决这些新出现的问题。

在当今世界,大数据安全是个大问题。正如我们所知道的大数据系统并不像普通单一的供应商系统,因此安全问题的处理更加复杂。想免费学习?参与活动即可领取学习光盘:在线报名就可以获得包邮的光盘教程一份哦!http://www.hdb.com/party/8f84u.html

时间: 2024-10-29 15:10:36

保护【大数据】应用的步骤和工具的相关文章

大数据产品不仅仅是IT工具

对于企业的业务人员,特别是数据科学家人群来说,Informatica的Intelligent Data Platform不仅是一个智能化的大数据预处理工具,而且可以像业务系统一样为企业带来直接的价值. 互联网企业通常会强调细节和微创新,把产品的某一项功能做到极致,借此牢牢吸引大量用户.但是企业级厂商则不同,它们更倾向于将产品平台化.平台化的好处是可以把尽量多的功能集成在一起,方便部署与管理,而且可以借平台屏蔽底层架构的复杂性.软件厂商尤喜平台化,比如数据保护厂商有数据保护和统一管理平台,大数据产

大数据领域的顶级开源工具大集合

如今,从小型初创企业到行业巨头,各种规模的供应商都在使用开源来处理大数据和运行预测分析.本文介绍了一些大数据方面的顶级开源工具,分为四个领域:数据存储,开发平台,开发工具和集成,分析和报告工具. 随着大数据与预测分析的成熟,开源作为底层技术授权解决方案的最大贡献者的优势越来越明显. 如今,从小型初创企业到行业巨头,各种规模的供应商都在使用开源来处理大数据和运行预测分析.借助开源与云计算技术,新兴公司甚至在很多方面都可以与大厂商抗衡. 以下是一些大数据方面的顶级开源工具,分为四个领域:数据存储.开

分类推荐&通俗易懂 :数据科学与大数据技术专业领域的实用工具

数据科学与大数据技术是一门偏向应用的学科领域,因此工具就成为重要的组成部分.在工作中,数据科学家如果选择有效的工具会带来事半功倍的效果.一般来说,数据科学家应该具有操作数据库.数据处理和数据可视化等相关技能,还有很多人还认为计算机技能也是不可或缺的,可以提高数据科学家工作的效率. 在这里相信有许多想要学习大数据的同学,大家可以+下大数据学习裙:957205962,即可免费领取套系统的大数据学习教程 开源社区多年来对数据科学工具包开发有着巨大贡献,这也让数据科学领域得以不断进步.这里我们收集了一些

大数据开发学习步骤

经常有初学者 问我,自己想往大数据方向发展,该学哪些技术,学习路线是什么样的,觉得大数据很火,就业很好,薪资很高.如果自己很迷茫,为了这些原因想往大数据方向发展,也可以,那么我就想问一下,你的专业是什么,对于计算机/软件,你的兴趣是什么?是计算机专业,对操作系统.硬件.网络.服务器感兴趣?是软件专业,对软件开发.编程.写代码感兴趣?还是数学.统计学专业,对数据和数字特别感兴趣. 其实这就是想告诉你的大数据的三个发展方向,平台搭建/优化/运维/监控.大数据开发/设计/架构.数据分析/挖掘.请不要问

Spark成为大数据高手进阶步骤

什么是Spark Spark是UC Berkeley AMP lab所开源的类Hadoop MapReduce的通用的并行计算框架,Spark基于map reduce算法实现的分布式计算,拥有Hadoop MapReduce所具有的优点:但不同于MapReduce的是Job中间输出和结果可以保存在内存中,从而不再需要读写HDFS,因此Spark能更好地适用于数据挖掘与机器学习等需要迭代的map reduce的算法.其架构如下图所示: Spark的适用场景 Spark是基于内存的迭代计算框架,适用

大数据分布式实战步骤

一.下载安装docker 1.windows系统中Docker目前仅有win10专业版和企业版的安装包,win7/win8/win10家庭版需要通过docker toolbox来安装.CE为免费版 docker toolbox下载地址:http://mirrors.aliyun.com/docker-toolbox/windows/docker-toolbox/ 双击exe文件,按默认步骤安装,安装过程中选择插件时全部勾选即可,安装完成桌面会显示三个图表,如下图: 2.双击桌面上的Docker

大数据时代:如何保护大数据安全

随着互联网.物联网.云计算等技术的快速发展,以及智能终端.网络社会.数字地球等信息体的普及和建设,全球数据量出现爆炸式增长.大数据的使用在日常生活中也广泛应用:预测疾病.预测奖项.支撑智能交通.助力企业商业决策.分析客户心理等等.大数据的作用正在日渐凸显,但同时,大数据的安全问题也不容忽视,个人隐私保护.大数据的污染,这一系列的问题正随着大数据的发展逐渐显现出来. 好莱坞明星艳照门事件的发生,再次给人们敲响了信息时代的隐私安全的警钟.随着越来越多的数据以云的方式在移动互联网上存储和传播,人们的隐

大数据开发过程中的5个学习通用步骤

大数据的开发过程,如图1-1所示. 图 1-1大数据开发通用步骤图 上图只是一个简化后的步骤和流程,实际开发中,有的步骤可能不需要,有的还需要增加步骤,有的流程可能更复杂,因具体情况而定. 下面以Google搜索引擎为例,来说明以上步骤. 如果你想要学好大数据最好加入一个好的学习环境,可以来这个Q群529867072 这样大家学习的话就比较方便,还能够共同交流和分享资料 大数据采集 Google的数据来源于互联网上的网页,它们由Google Spider(蜘蛛.爬虫.机器人)来抓取,抓取的原理也

4个步骤带你搞定大数据,Linux到大数据学习路线资料(绝对必看)

Linux学习路线图 运维学习需要分为四个阶段: ①linux初级入门 ②linux中级进阶 ③linux高级提升 ④资深方向细化. 第一阶段:初级入门 Linux基础知识.基本命令(起源.组成.常用命令如cp.ls.file.mkdir等常见操作命令)Linux用户及权限基础Linux系统进程管理进阶Linux高效文本.文件处理命令(vim.grep.sed.awk.find等命令)第二阶段:中级进阶(基础运维) 中级进阶需要在充分了解linux原理和基础知识之后,对上层的应用和服务进行深入学