Opencv图像识别从零到精通(21)-----canny算子边缘检测

最后来看看canny算子,这个是被成为最好的算子,因为过程多,有准测,后面会列出来,也是边缘检测的最后一个,所以这里作为结尾,来看看各个边缘检测的效果。

边缘检测结果比较

  • Roberts算子检测方法对具有陡峭的低噪声的图像处理效果较好,但是利用roberts算子提取边缘的结果是边缘比较粗,因此边缘的定位不是很准确。
  • Sobel算子检测方法对灰度渐变和噪声较多的图像处理效果较好,sobel算子对边缘定位不是很准确,图像的边缘不止一个像素。
  • Prewitt算子检测方法对灰度渐变和噪声较多的图像处理效果较好。但边缘较宽,而且间断点多。
  • Laplacian算子法对噪声比较敏感,所以很少用该算子检测边缘,而是用来判断边缘像素视为与图像的明区还是暗区。
  • Canny方法不容易受噪声干扰,能够检测到真正的弱边缘。优点在于,使用两种不同的阈值分别检测强边缘和弱边缘,并且当弱边缘和强边缘相连时,才将弱边缘包含在输出图像中

canny对边缘检测质量进行分析时,有3个原则:

  • 1、信噪比准则
  • 2、定位精度准则
  • 3、单边缘响应准则

canny边缘检测的基本思想是:首先对图像选择一定的Gauss滤波器进行平滑滤波,然后采用非极值抑制技术进行处理得到最后的边缘图像。

具体步骤:

1、用高斯滤波器平滑图像

对图像进行高斯滤波,听起来很玄乎,其实就是根据待滤波的像素点及其邻域点的灰度值按照一定的参数规则进行加权平均。这样可以有效滤去理想图像中叠加的高频噪声。

2、用一阶偏导的有限差分来计算梯度的幅值和方向

图像灰度值得梯度可使用一阶有限差分来进行近似,这样就可以得图像在x和y方向上偏导数的两个矩阵。常用的梯度算子就是Roberts.sobel,prewitt.,canny

3、对梯度幅值进行非极大值抑制

图像梯度幅值矩阵中的元素值越大,说明图像中该点的梯度值越大,但这不不能说明该点就是边缘(这仅仅是属于图像增强的过程)。在Canny算法中,非极大值抑制是进行边缘检测的重要步骤,通俗意义上是指寻找像素点局部最大值,将非极大值点所对应的灰度值置为0,这样可以剔除掉一大部分非边缘的点

4、用双阈值算法检测和连接边缘

Canny算法中减少假边缘数量的方法是采用双阈值法。选择两个阈值(关于阈值的选取方法在扩展中进行讨论),根据高阈值得到一个边缘图像,这样一个图像含有很少的假边缘,但是由于阈值较高,产生的图像边缘可能不闭合,未解决这样一个问题采用了另外一个低阈值。

通俗的来说:就是在进行边缘检测时,还是要用到滤波减小噪声,先通过在水平和垂直方向的一阶偏导,求得梯度的幅值和方向,这样每个点都可能有4中方向情况(0,45,90,135度),在局部范围内,保留在同一方向上,梯度最大的点,非最大就置零,最后使用2个阈值T1和T2(T1<T2),T2用来找到每条线段,T1用来在这些线段的两个方向上延伸寻找边缘的断裂处,并连接这些边缘。

<span style="font-size:18px;">C++: void Canny(InputArray image,OutputArray edges, double threshold1, double threshold2, int apertureSize=3,bool L2gradient=false )  </span>
  • 第一个参数,InputArray类型的image,输入图像,即源图像,填Mat类的对象即可,且需为单通道8位图像。
  • 第二个参数,OutputArray类型的edges,输出的边缘图,需要和源图片有一样的尺寸和类型。
  • 第三个参数,double类型的threshold1,第一个滞后性阈值。
  • 第四个参数,double类型的threshold2,第二个滞后性阈值。
  • 第五个参数,int类型的apertureSize,表示应用Sobel算子的孔径大小,其有默认值3。
  • 第六个参数,bool类型的L2gradient,一个计算图像梯度幅值的标识,有默认值false。
<span style="font-size:18px;">#include "opencv2/imgproc/imgproc.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <stdlib.h>
#include <stdio.h>
#include <iostream>
using namespace cv;
using namespace std;
Mat src, src_gray;
Mat dst, detected_edges;
int edgeThresh = 1;
int lowThreshold;
int const max_lowThreshold = 100;
int ratio = 3;
int kernel_size = 3;
const char* window_name = "Edge Map";
static void CannyThreshold(int, void*)
{  

    Canny( src_gray, detected_edges, lowThreshold, lowThreshold*ratio, kernel_size );
    dst = Scalar::all(0);
    src.copyTo( dst, detected_edges);
    imshow( window_name, dst );
}
int main( int, char** argv )
{  

  src = imread("D:\\lena.jpg",CV_LOAD_IMAGE_COLOR);
  if( !src.data )
    { return -1; }
  dst.create( src.size(), src.type() );
  cvtColor( src, src_gray, CV_BGR2GRAY );
  namedWindow( window_name, CV_WINDOW_AUTOSIZE );
  createTrackbar( "Min Threshold:", window_name, &lowThreshold, max_lowThreshold, CannyThreshold );
  CannyThreshold(0, 0);
  waitKey(0);
  return 0;
} </span>

matlab

<span style="font-size:18px;">I=imread('d:\lena.jpg');
I1=rgb2gray(I);
img1=edge(I1,'canny',[0.03,0.08],3);
subplot(121),imshow(I);
subplot(122),imshow(img1)</span>

时间: 2024-11-10 01:17:54

Opencv图像识别从零到精通(21)-----canny算子边缘检测的相关文章

Opencv图像识别从零到精通(26)---分水岭

分水岭是区域分割三个方法的最后一个,对于前景背景的分割有不错的效果. 分水岭分割方法,是一种基于拓扑理论的数学形态学的分割方法,其基本思想是把图像看作是测地学上的拓扑地貌,图像中每一点像素的灰度值表示该点的海拔高度,每一个局部极小值及其影响区域称为集水盆,而集水盆的边界则形成分水岭.分水岭的概念和形成可以通过模拟浸入过程来说明.在每一个局部极小值表面,刺穿一个小孔,然后把整个模型慢慢浸入水中,随着浸入的加深,每一个局部极小值的影响域慢慢向外扩展,在两个集水盆汇合处构筑大坝,即形成分水岭. 分水岭

Opencv图像识别从零到精通(30)---重映射,仿射变换

一.序言 面对图像处理的时候,我们会旋转缩放图像,例如前面所提高的resize 插值改变,也是几何变换: 几何运算需要空间变换和灰度级差值两个步骤的算法,像素通过变换映射到新的坐标位置,新的位置可能是在几个像素之间,即不一定为整数坐标.这时就需要灰度级差值将映射的新坐标匹配到输出像素之间.最简单的插值方法是最近邻插值,就是令输出像素的灰度值等于映射最近的位置像素,该方法可能会产生锯齿.这种方法也叫零阶插值,相应比较复杂的还有一阶和高阶插值. 除了插值算法感觉只要了解就可以了,图像处理中比较需要理

Opencv图像识别从零到精通(29)-----图像金字塔,向上上下采样,resize插值

金字塔的底部是待处理图像的高分辨率表示,而顶部是低分辨率的近似.我们将一层一层的图像比喻成金字塔,层级越高,则图像越小,分辨率越低 一.两个金字塔 高斯金字塔(Gaussianpyramid): 用来向下采样,主要的图像金字塔 拉普拉斯金字塔(Laplacianpyramid): 用来从金字塔低层图像重建上层未采样图像,在数字图像处理中也即是预测残差,可以对图像进行最大程度的还原,配合高斯金字塔一起使用. 高斯金字塔不同(DoG)又称为拉普拉斯金字塔,给出计算方式前,先加强一下定义 记得在上面我

Opencv图像识别从零到精通(33)----moravec角点、harris角点

一.角点 图像处理和与计算机视觉领域,兴趣点(interest points),或称作关键点(keypoints).特征点(feature points) 被大量用于解决物体识别,图像识别.图像匹配.视觉跟踪.三维重建等一系列的问题.我们不再观察整幅图,而是选择某些特殊的点,然后对他们进行局部有的放矢的分析.如果能检测到足够多的这种点,同时他们的区分度很高,并且可以精确定位稳定的特征,那么这个方法就有使用价值. 图像特征类型可以被分为如下三种: <1>边缘                   

Opencv图像识别从零到精通(7)----图像平移、旋转、镜像

根据vc6.0c++的学习经验,如果可以很好的自己编程,让图像进行平移旋转这些操作,那么就好像能够清楚的看见图像的内部结构当然这里你怎么访问像素,这个可以自己选一种适合的,最多的是ptr指针,at也是挺多的.看着很简单的变换,可以对图像处理上手的更快,当然对于旋转可能就稍微i难了一点,不过opencv提供了resize(0,remap()等这样的函数,可以方便的让我们进行学习-特别是旋转的时候,有很多的变换,你可以任意旋转一个角度,也可能一直旋转,当然还可以保持图像大小不变的旋转和大小变换的旋转

Opencv图像识别从零到精通(24)------漫水填充,种子填充,区域生长、孔洞填充

可以说从这篇文章开始,就结束了图像识别的入门基础,来到了第二阶段的学习.在平时处理二值图像的时候,除了要进行形态学的一些操作,还有有上一节讲到的轮廓连通区域的面积周长标记等,还有一个最常见的就是孔洞的填充,opencv这里成为漫水填充,其实也可以叫种子填充,或者区域生长,基本的原理是一样的,但是应用的时候需要注意一下,种子填充用递归的办法,回溯算法,漫水填充使用堆栈,提高效率,同时还提供了一种方式是扫描行.经常用来填充孔洞,现在来具体看看. 漫水填充:也就是用一定颜色填充联通区域,通过设置可连通

Opencv图像识别从零到精通(28)----Kmeans

K-means算法算是个著名的聚类算法了,不仅容易实现,并且效果也不错,训练过程不需人工干预,实乃模式识别等领域的居家必备良品啊,今天就拿这个算法练练手.属于无监督学习中间接聚类方法中的动态聚类 流程: 1.随机选取样本中的K个点作为聚类中心 2.计算所有样本到各个聚类中心的距离,将每个样本规划在最近的聚类中 3.计算每个聚类中所有样本的中心,并将新的中心代替原来的中心 4.检查新老聚类中心的距离,如果距离超过规定的阈值,则重复2-4,直到小于阈值 聚类属于无监督学习,以往的回归.朴素贝叶斯.S

Opencv图像识别从零到精通(27)---grabcut

这是基于图论的分割方法,所以开始就先介绍了 Graph cuts,然后再到Grab cut   一. Graph cuts Graph cuts是一种十分有用和流行的能量优化算法,在计算机视觉领域普遍应用于前背景分割(Image segmentation).立体视觉(stereo vision).抠图(Image matting)等. 此类方法把图像分割问题与图的最小割(min cut)问题相关联.首先用一个无向图G=<V,E>表示要分割的图像,V和E分别是顶点(vertex)和边(edge)

Opencv图像识别从零到精通(34)---SIFI

   一.理论知识 Scale Invariant Feature Transform,尺度不变特征变换匹配算法,对于算法的理论介绍,可以参考这篇文章http://blog.csdn.net/qq_20823641/article/details/51692415,里面很详细,可以更好的学习.这里就不多介绍.后面就挑选重点的来说 二.SIFT 主要思想 SIFT算法是一种提取局部特征的算法,在尺度空间寻找极值点,提取位置,尺度,旋转不变量. 三.SIFT算法的主要特点: a) SIFT特征是图像