BZOJ 2038 小Z的袜子(莫队算法)

莫队算法
如果我们已知[l,r]的答案,能在O(1)时间得到[l+1,r]的答案以及[l,r-1]的答案,即可使用莫队算法。时间复杂度为O(n^1.5)。如果只能在logn的时间移动区间,则时间复杂度是O(n^1.5*log n)。
其实就是找一个数据结构支持插入、删除时维护当前答案。

这道题的话我们很容易用数组来实现,做到O(1)的从[l,r]转移到[l,r+1]与[l+1,r]。

那么莫队算法怎么做呢?以下都是在转移为O(1)的基础下讨论的时间复杂度。另外由于n与m同阶,就统一写n。
如果已知[l,r]的答案,要求[l’,r’]的答案,我们很容易通过|l – l’|+|r – r’|次转移内求得。
将n个数分成sqrt(n)块。
按区间排序,以左端点所在块内为第一关键字,右端点为第二关键字,进行排序,也就是以(pos [l],r)排序
然后按这个排序直接暴力,复杂度分析是这样的:
1、i与i+1在同一块内,r单调递增,所以r是O(n)的。由于有n^0.5块,所以这一部分时间复杂度是n^1.5。
2、i与i+1跨越一块,r最多变化n,由于有n^0.5块,所以这一部分时间复杂度是n^1.5
3、i与i+1在同一块内时l变化不超过n^0.5,跨越一块也不会超过n^0.5,忽略*2。由于有m次询问(和n同级),所以时间复杂度是n^1.5
于是就是O(n^1.5)了

# include <cstdio>
# include <cstring>
# include <cstdlib>
# include <iostream>
# include <vector>
# include <queue>
# include <stack>
# include <map>
# include <set>
# include <cmath>
# include <algorithm>
using namespace std;
# define lowbit(x) ((x)&(-x))
# define pi 3.1415926535
# define eps 1e-9
# define MOD 1000000009
# define INF 1000000000
# define mem(a,b) memset(a,b,sizeof(a))
# define FOR(i,a,n) for(int i=a; i<=n; ++i)
# define FO(i,a,n) for(int i=a; i<n; ++i)
# define bug puts("H");
# define lch p<<1,l,mid
# define rch p<<1|1,mid+1,r
# define mp make_pair
# define pb push_back
typedef pair<int,int> PII;
typedef vector<int> VI;
# pragma comment(linker, "/STACK:1024000000,1024000000")
typedef long long LL;
int Scan() {
    int res=0, flag=0;
    char ch;
    if((ch=getchar())==‘-‘) flag=1;
    else if(ch>=‘0‘&&ch<=‘9‘) res=ch-‘0‘;
    while((ch=getchar())>=‘0‘&&ch<=‘9‘)  res=res*10+(ch-‘0‘);
    return flag?-res:res;
}
void Out(int a) {
    if(a<0) {putchar(‘-‘); a=-a;}
    if(a>=10) Out(a/10);
    putchar(a%10+‘0‘);
}
const int N=50005;
//Code begin...

struct Query{int L, R, id;}node[N];
LL gcd(LL a, LL b){return b==0?a:gcd(b,a%b);}
struct Ans{
    LL a, b;
    void reduce(){LL d=gcd(a,b); a/=d; b/=d;}
}ans[N];
int a[N], num[N], n, m, unit;

bool comp(Query a, Query b){
    if (a.L/unit!=b.L/unit) return a.L/unit<b.L/unit;
    return a.R<b.R;
}
void work(){
    LL temp=0;
    mem(num,0);
    int L=1, R=0;
    FO(i,0,m) {
        while (R<node[i].R) {
            ++R; temp-=(LL)num[a[R]]*num[a[R]];
            ++num[a[R]]; temp+=(LL)num[a[R]]*num[a[R]];
        }
        while (R>node[i].R) {
            temp-=(LL)num[a[R]]*num[a[R]]; --num[a[R]];
            temp+=(LL)num[a[R]]*num[a[R]]; --R;
        }
        while (L<node[i].L) {
            temp-=(LL)num[a[L]]*num[a[L]]; --num[a[L]];
            temp+=(LL)num[a[L]]*num[a[L]]; ++L;
        }
        while (L>node[i].L) {
            --L; temp-=(LL)num[a[L]]*num[a[L]];
            ++num[a[L]]; temp+=(LL)num[a[L]]*num[a[L]];
        }
        ans[node[i].id].a=temp-(R-L+1);
        ans[node[i].id].b=(LL)(R-L+1)*(R-L);
        ans[node[i].id].reduce();
    }
}
int main ()
{
    scanf("%d%d",&n,&m);
    FOR(i,1,n) scanf("%d",a+i);
    FO(i,0,m) scanf("%d%d",&node[i].L,&node[i].R), node[i].id=i;
    unit=(int)sqrt(n);
    sort(node,node+m,comp);
    work();
    FO(i,0,m) printf("%lld/%lld\n",ans[i].a,ans[i].b);
    return 0;
}

时间: 2024-11-05 02:36:00

BZOJ 2038 小Z的袜子(莫队算法)的相关文章

BZOJ 2038 小z的袜子 &amp; 莫队算法(不就是个暴力么..)

题意: 给一段序列,询问一个区间,求出区间中.....woc! 贴原题! 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命…… 具体来说,小Z把这N只袜子从1到N编号,然后从编号L到R(L 尽管小Z并不在意两只袜子是不是完整的一双,甚至不在意两只袜子是否一左一右,他却很在意袜子的颜色,毕竟穿两只不同色的袜子会很尴尬. 你的任务便是告诉小Z,他有多大的概率抽到两只颜色相同的袜子.当然,小Z希望这个概

bzoj 2038 小z的袜子 莫队例题

莫队,利用可以快速地通过一个问题的答案得到另一问题的答案这一特性,合理地组织问题的求解顺序,将已解决的问题帮助解决当前问题,来优化时间复杂度. 典型用法:处理静态(无修改)离线区间查询问题. 线段树也是处理区间问题的一个有力工具,它和莫队算法各有特点: 线段树可以支持修改,并且单次操作时间复杂度一般为O(log),支持在线,但是要求可以进行快速的区间合并操作,两个区间如不能快速合并(f(n)*O(log)>O(n)),则用线段树就没有什么实际价值了(暴力都比它块) 莫队算法可以解决某些线段树不能

BZOJ 2038 2009国家集训队 小Z的袜子 莫队算法

题目大意:给出一些袜子的排列顺序,每次问一段区间中有多少相同颜色的袜子对. 思路:莫队算法真是一个神奇的算法.首先,暴力枚举是O(n^2)的时间复杂度,这肯定是不行的.假如区间是保证不重合的,那么就可以将总的时间转移的复杂度降到O(n).很遗憾,题目中没有这个保证.于是乎,神秘的莫队就发明了一种神奇的算法. 对于每一个询问,我们将它看成一个平面上的点(x1,y1),同样的也就会有其他的点分布在平面中.假如还有一个点(x2,y2),那么我们从第一个区间转移到第二个区间需要改变的元素总数为|x1 -

清橙A1206 小Z的袜子(莫队算法)

A1206. 小Z的袜子 时间限制:1.0s   内存限制:512.0MB 总提交次数:744   AC次数:210   平均分:44.44 将本题分享到: 查看未格式化的试题   提交   试题讨论 试题来源 2010中国国家集训队命题答辩 问题描述 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命-- 具体来说,小Z把这N只袜子从1到N编号,然后从编号L到R(L 尽管小Z并不在意两只袜子是不是

Luogu 1494 - 小Z的袜子 - [莫队算法模板题][分块]

题目链接:https://www.luogu.org/problemnew/show/P1494 题目描述 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命-- 具体来说,小Z把这N只袜子从1到N编号,然后从编号L到R(L 尽管小Z并不在意两只袜子是不是完整的一双,甚至不在意两只袜子是否一左一右,他却很在意袜子的颜色,毕竟穿两只不同色的袜子会很尴尬. 你的任务便是告诉小Z,他有多大的概率抽到两只颜

Luogu 1494 - 小Z的袜子 - [莫队算法模板题]

题目链接:https://www.luogu.org/problemnew/show/P1494 题目描述 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命-- 具体来说,小Z把这N只袜子从1到N编号,然后从编号L到R(L 尽管小Z并不在意两只袜子是不是完整的一双,甚至不在意两只袜子是否一左一右,他却很在意袜子的颜色,毕竟穿两只不同色的袜子会很尴尬. 你的任务便是告诉小Z,他有多大的概率抽到两只颜

bzoj 2038 小Z的袜子(hose)(莫队算法)

2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 11542  Solved: 5166[Submit][Status][Discuss] Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色的袜子中找出一双来穿.终于有一天,小Z再也无法忍受这恼人的找袜子过程,于是他决定听天由命--具体来说,小Z把这N只袜子从1到N编号,然后从编号L到R(L 尽管小Z并不在意两

BZOJ 2038 小Z的袜子(hose) (莫队离线)

题目地址:BZOJ 2038 裸的莫队算法. 代码如下: #include <iostream> #include <string.h> #include <math.h> #include <queue> #include <algorithm> #include <stdlib.h> #include <map> #include <set> #include <stdio.h> #includ

bzoj 2038 小Z的袜子

好久没写题解了=_= ,整个暑假就没写过,还是决定写写吧,所以挑了这道大水题. 这是标准的莫队算法的问题,但由于可能数据水还是别的什么原因,不用曼哈顿最小生成树也可以过.具体就是按询问区间的左端点分块, 块内按右端点排序,然后暴力…… 真的是暴力,太暴力了,直到AC以后我才相信这么暴力真的可以在O(N^1.5)的时间复杂度内过掉. 块内具体就是右端点递增,左端点由于在块内并不是有序的,所以左端点就会晃来晃去,真是太暴力了…… 上代码: #include <cstdio> #include &l