凸包 及 多边形面积

首先求多边形面积,这个比较简单,用的就是把一个多边形划分为多个三角形,然后求三角形面积。

代码:

double Cross(Vector A,Vector B) { return (A.x*B.y-A.y*B.x); }
double ConvexPolygonArea(Point* p,int n)//多边形面积,,点按顺序
{
    double area=0;
    for(int i=1;i<n-1;i++)
        area+=Cross(p[i]-p[0],p[i+1]-p[0]);
    return area/2;
}

求凸包的算法有很多,这里给出Andrew算法。

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
#include <queue>
#include <vector>
#include <map>
#include <set>
#include <string>
using namespace std;
#define Del(a,b) memset(a,b,sizeof(a))
const int N = 1010;
const double esp = 1e-10;
struct Point
{
    double x,y;
    Point(double x=0,double y=0):x(x),y(y) {}
};
typedef Point Vector;
Vector operator + (Vector A,Vector B) { return Vector(A.x+B.x,A.y+B.y); }
Vector operator - (Vector A,Vector B) { return Vector(A.x-B.x,A.y-B.y); }
Vector operator * (Vector A,double p) { return Vector(A.x*p,A.y*p); }
Vector operator / (Vector A,double p) { return Vector(A.x/p,A.y/p); }

bool operator < (const Point& a,const Point& b)
{
    return a.x<b.x || (a.x==b.x && a.y<b.y);
}
int dcmp(double x)  //
{
    if(fabs(x)<esp) return 0;
    else return x<0?-1:1;
}
bool operator == (const Point& a,const Point& b)
{
    return dcmp(a.x-b.x) == 0 && dcmp(a.y-b.y)==0;
}
///计算点积,及向量长度,及向量夹角
double Dot(Vector A,Vector B) { return A.x*B.x+A.y*B.y; }
double Length(Vector A) { return sqrt(Dot(A,A)); }
double Angle(Vector A,Vector B) { return acos(Dot(A,B))/Length(A)/Length(B); }
//计算叉积,向量逆时针旋转
double Cross(Vector A,Vector B) { return (A.x*B.y-A.y*B.x); }
double Area2(Vector A,Vector B,Vector C)  { return Cross(B-A,C-A); }
Vector Rotate(Vector A,double rad)
{
    return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad));
}
int cmp(Point a,Point b)
{
    if(a.x!=b.x)
        return a.x<b.x;
    if(a.y!=b.y)
        return a.y<b.y;
}
double ConvexPolygonArea(Point* p,int n)//多边形面积,,点按顺序
{
    double area=0;
    for(int i=1;i<n-1;i++)
        area+=Cross(p[i]-p[0],p[i+1]-p[0]);
    return area/2;
}
int ConvexHull(Point *p,Point *ch,int n)//求凸包
{
    sort(p,p+n);
    int i,m=0,k;
    for(i=0;i<n;i++)
    {
        while(m>1&&Cross(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=0)m--;
        ch[m++]=p[i];
    }
    k=m;
    for(i=n-2;i>=0;i--)
    {
        while(m>k&&Cross(ch[m-1]-ch[m-2],p[i]-ch[m-2])<=0)m--;
        ch[m++]=p[i];
    }
    if(n>1)m--;
    return m;
}
int main()
{
    int n,k;
    Point a[N],ch[N];
    while(~scanf("%d",&n))
    {
        for(int i=0;i<n;i++)
            scanf("%lf%lf",&a[i].x,&a[i].y);
        int num=ConvexHull(a,ch,n);
        double ans=ConvexPolygonArea(ch,num);
        ans/=50.0;
        printf("%d\n",(int)ans);
    }
    return 0;
}

凸包 及 多边形面积

时间: 2024-10-12 21:42:26

凸包 及 多边形面积的相关文章

凸包,多边形面积,线段在多边形内的判定。

zoj3570  Lott's Seal http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4569 1 #include<cstdio> 2 #include<cstdlib> 3 #include<cmath> 4 #include<algorithm> 5 using namespace std; 6 const double eps=1e-8; 7 const int M=10001

poj 3348 Cows 凸包 求多边形面积 计算几何 难度:0 Source:CCC207

Cows Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 7038   Accepted: 3242 Description Your friend to the south is interested in building fences and turning plowshares into swords. In order to help with his overseas adventure, they are f

Cows 计算几何 求凸包 求多边形面积

题目链接:https://cn.vjudge.net/problem/POJ-3348 题意 啊模版题啊 求凸包的面积,除50即可 思路 求凸包的面积,除50即可 提交过程 AC 代码 #include <cmath> #include <cstdio> #include <vector> #include <algorithm> using namespace std; const double eps=1e-10; struct Point{ doubl

简单几何(向量旋转+凸包+多边形面积) UVA 10652 Board Wrapping

题目传送门 题意:告诉若干个矩形的信息,问他们在凸多边形中所占的面积比例 分析:训练指南P272,矩形面积长*宽,只要计算出所有的点,用凸包后再求多边形面积.已知矩形的中心,向量在原点参考点再旋转,角度要转换成弧度制. /************************************************ * Author :Running_Time * Created Time :2015/11/10 星期二 10:34:43 * File Name :UVA_10652.cpp

简单几何(凸包+多边形面积) POJ 3348 Cows

题目传送门 题意:求凸包 + (int)求面积 / 50 /************************************************ * Author :Running_Time * Created Time :2015/11/4 星期三 11:13:29 * File Name :POJ_3348.cpp ************************************************/ #include <cstdio> #include <a

POJ 3348 Cows(凸包+多边形面积)

先求出凸包,然后利用凸包求出面积,除以50就是答案 代码: #include<cstdio> #include<cmath> #include<algorithm> using namespace std; const int MAXN=10005; struct Point { double x, y; Point() {} Point(double x, double y) { this->x = x; this->y = y; } void read(

多边形面积公式

多边形面积公式 设点顺序 (x1 y1) (x2 y2)    ... (xn yn) 则面积等于 |x1   y1 |      |x2   y2|                  |xn   yn| 0.5 * abs( |            | +   |           | + ...... +   |           | ) |x2   y2 |      |x3   y3|                  |x1   y1| 其中        |x1   y1| |

三角剖分求多边形面积的交 HDU3060

1 //三角剖分求多边形面积的交 HDU3060 2 3 #include <iostream> 4 #include <cstdio> 5 #include <cstring> 6 #include <stack> 7 #include <queue> 8 #include <cmath> 9 #include <algorithm> 10 using namespace std; 11 12 const int max

poj 1654 Area(求多边形面积)

题意:从原点出发向八个方向走,所给数字串每个数字代表一个方向,终点与原点连线,求所得多边形面积: 思路:(性质)共起点的两向量叉积的一半为两向量围成三角形的面积.以此计算每条边首尾两个向量的叉积,求和,除二: #include<cstdio> #include<iostream> #include<cstring> #include<cmath> #include<algorithm> using namespace std; const dou