先验概率、后验概率、似然估计,似然函数、贝叶斯公式

联合概率乘法公式

(如果随机变量是独立的,则
 

由乘法公式可得条件概率公式:,

全概率公式,其中

,则,则可轻易推导出上式)

贝叶斯公式

又名后验概率公式逆概率公式后验概率似然函数×先验概率/证据因子。解释如下,假设我们根据“手臂是否很长”这个随机变量(取值为“手臂很长”或“手臂不长”)的观测样本数据来分析远处一个生物是猩猩类别还是人类类别(假设总共只有这2种类别)。我们身处一个人迹罕至的深山老林里,且之前就有很多报道说这里有猩猩出没,所以无需观测样本数据就知道是猩猩的先验概率(Prior Probability)较大,比如根据历史数据估计有70%=0.7。接着,我们得到了的观测样本数据:“手臂很长”──而猩猩类别表现为这种特征的类条件概率,或者说这种“可能性”似然(Likelihood)较大,相比于人类表现为“手臂很长”的似然。所以经这次观测之后加强了我们的判断:是一只猩猩的后验概率(Posterior Probability)变得比先验概率更大,超过了之前的70%!反之,如果观测发现这个生物的手臂不长,而猩猩类别表现为“手臂不长”的似然较小,则会减弱我们的判断,是猩猩的后验概率将小于70%。因此,后验概率包含了先验信息以及观测样本数据提供的后验信息,对先验概率进行了修正,更接近真实情况。此外,证据因子(Evidence,也被称为归一化常数)可仅看成一个权值因子,以保证各类别的后验概率总和为1从而满足概率条件。

如果我们的目标仅仅是要对所属类别作出一个判别:是“猩猩”还是“人类”,则无需去计算后验概率的具体数值,只需计算哪个类别的后验概率更大即可。假设猩猩和人类出现的先验概率相等,,则此时类别的判定完全取决于似然和的大小。因此,似然函数Likelihood:“可能性”)的重要性不是它的具体取值,而是当参数(如类别参数)变化时,函数到底变小还是变大,以便反过来对参数进行估计求解(估计出是还是)。

图片很多没有显示,见原文:http://www.sigvc.org/why/book/3dp/chap10.8.1.htm

先验概率、后验概率与似然估计

先验概率、后验概率与似然估计

本文假设大家都知道什么叫条件概率了(P(A|B)表示在B事件发生的情况下,A事件发生的概率)。

先验概率和后验概率
教科书上的解释总是太绕了。其实举个例子大家就明白这两个东西了。

假设我们出门堵车的可能因素有两个(就是假设而已,别当真):车辆太多和交通事故。

堵车的概率就是先验概率 。

那么如果我们出门之前我们听到新闻说今天路上出了个交通事故,那么我们想算一下堵车的概率,这个就叫做条件概率 。也就是P(堵车|交通事故)。这是有因求果。

如果我们已经出了门,然后遇到了堵车,那么我们想算一下堵车时由交通事故引起的概率有多大,

那这个就叫做后验概率 (也是条件概率,但是通常习惯这么说)。也就是P(交通事故|堵车)。这是有果求因。

下面的定义摘自百度百科:

先验概率是指根据以往经验和分析得到的概率,如全概率公式,它往往作为"由因求果"问题中的"因"出现.

后验概率是指依据得到"结果"信息所计算出的最有可能是那种事件发生,如贝叶斯公式中的,是"执果寻因"问题中的"因".

那么这两个概念有什么用呢?

最大似然估计
我们来看一个例子。

有一天,有个病人到医院看病。他告诉医生说自己头痛,然后医生根据自己的经验判断出他是感冒了,然后给他开了些药回去吃。

有人肯定要问了,这个例子看起来跟我们要讲的最大似然估计有啥关系啊。

关系可大了,事实上医生在不知不觉中就用到了最大似然估计(虽然有点牵强,但大家就勉为其难地接受吧^_^)。

怎么说呢?

大家知道,头痛的原因有很多种啊,比如感冒,中风,脑溢血...(脑残>_<这个我可不知道会不会头痛,还有那些看到难题就头痛的病人也不在讨论范围啊!)。

那么医生凭什么说那个病人就是感冒呢?哦,医生说这是我从医多年的经验啊。

咱们从概率的角度来研究一下这个问题。

其实医生的大脑是这么工作的,

他计算了一下

P(感冒|头痛)(头痛由感冒引起的概率,下面类似)

P(中风|头痛)

P(脑溢血|头痛)

...

然后这个计算机大脑发现,P(感冒|头痛)是最大的,因此就认为呢,病人是感冒了。看到了吗?这个就叫最大似然估计(Maximum likelihood estimation,MLE) 。

咱们再思考一下,P(感冒|头痛),P(中风|头痛),P(脑溢血|头痛)是先验概率还是后验概率呢?

没错,就是后验概率。看到了吧,后验概率可以用来看病(只要你算得出来,呵呵)。

事实上,后验概率起了这样一个用途,根据一些发生的事实(通常是坏的结果),分析结果产生的最可能的原因,然后才能有针对性地去解决问题。

那么先验概率有啥用呢?

我们来思考一下,P(脑残|头痛)是怎么算的。

P(脑残|头痛)=头痛的人中脑残的人数/头痛的人数

头痛的样本倒好找,但是头痛的人中脑残的人数就不好调查了吧。如果你去问一个头痛的人你是不是脑残了,我估计那人会把你拍飞吧。

接下来先验概率就派上用场了。

根据贝叶斯公式 ,

P(B|A)=P(A|B)P(B)/P(A)

我们可以知道

P(脑残|头痛)=P(头痛|脑残)P(脑残)/P(头痛)

注意,(头痛|脑残)是先验概率,那么利用贝叶斯公式我们就可以利用先验概率把后验概率算出来了。

P(头痛|脑残)=脑残的人中头痛的人数/脑残的人数

这样只需要我们去问脑残的人你头痛吗,明显很安全了。

(你说脑残的人数怎么来的啊,那我们就假设我们手上有一份传说中的脑残名单吧。那份同学不要吵,我没说你在名单上啊。

再说调查脑残人数的话咱就没必要抓着一个头痛的人问了。起码问一个心情好的人是否脑残比问一个头痛的人安全得多)

我承认上面的例子很牵强,不过主要是为了表达一个意思。后验概率在实际中一般是很难直接计算出来的,相反先验概率就容易多了。因此一般会利用先验概率来计算后验概率。

似然函数与最大似然估计

下面给出似然函数跟最大似然估计的定义。

我们假设f是一个概率密度函数,那么

是一个条件概率密度函数(θ 是固定的)

而反过来,

叫做似然函数 (x是固定的)。

一般把似然函数写成

θ是因变量。

而最大似然估计 就是求在θ的定义域中,当似然函数取得最大值时θ的大小。

意思就是呢,当后验概率最大时θ的大小。也就是说要求最有可能的原因。

由于对数函数不会改变大小关系,有时候会将似然函数求一下对数,方便计算。

例子:

我们假设有三种硬币,他们扔到正面的概率分别是1/3,1/2,2/3。我们手上有一个硬币,但是我们并不知道这是哪一种。因此我们做了一下实验,我们扔了80次,有49次正面,31次背面。那么这个硬币最可能是哪种呢?我们动手来算一下。这里θ的定义域是{1/3,1/2,2/3}

当p=2/3时,似然函数的值最大,因此呢,这个硬币很可能是2/3。

原文:http://hi.baidu.com/hi9394/item/5953948a4a2365cab0715407

时间: 2024-08-24 06:08:08

先验概率、后验概率、似然估计,似然函数、贝叶斯公式的相关文章

机器学习基础系列--先验概率 后验概率 似然函数 最大似然估计(MLE) 最大后验概率(MAE) 以及贝叶斯公式的理解

目录 机器学习基础 1. 概率和统计 2. 先验概率 3. 后验概率 4. 似然函数 5. 有趣的野史--贝叶斯和似然之争-最大似然概率(MLE)-最大后验概率(MAE)-贝叶斯公式 总结:先验概率 后验概率以及似然函数的关系 机器学习基础 1. 概率和统计 概率(probabilty)和统计(statistics)看似两个相近的概念,其实研究的问题刚好相反. 顾名思义: 概率研究的问题是,已知一个模型和参数,怎么去预测这个模型产生的结果的特性(例如均值,方差,协方差等等). 统计研究的问题则相

贝叶斯————极大似然估计

贝叶斯决策 贝叶斯公式(后验概率): p(w):每种类别分布的概率——先验概率: p(x|w):某类别下x事件发生的概率——条件概率: p(w|x):x事件已经发生,属于某类的概率——后验概率: 后验概率越大,说明x事件属于这个类的概率越大,就越有理由把事件x归到这个类下 实际问题中,我们只知道优先数目的样本数据,先验概率和条件概率不知道,求不出后验概率.这个时候需要对先验概率和条件概率进行估计,然后再使用贝叶斯分类器. 先验概率的估计方法: 每个样本的属于哪个类是已知的(有监督学习): 依靠经

贝叶斯决策 最大似然估计

贝叶斯决策 首先来看贝叶斯分类,我们都知道经典的贝叶斯公式: 其中:p(w):为先验概率,表示每种类别分布的概率::类条件概率,表示在某种类别前提下,某事发生的概率:而为后验概率,表示某事发生了,并且它属于某一类别的概率,有了这个后验概率,我们就可以对样本进行分类.后验概率越大,说明某事物属于这个类别的可能性越大,我们越有理由把它归到这个类别下. 我们来看一个直观的例子:已知:在夏季,某公园男性穿凉鞋的概率为1/2,女性穿凉鞋的概率为2/3,并且该公园中男女比例通常为2:1,问题:若你在公园中随

机器学习2-极大似然估计与贝叶斯估计

参数估计:最大似然.贝叶斯与最大后验 为什么会有参数估计呢?这要源于我们对所研究问题的简化和假设.我们在看待一个问题的时候,经常会使用一些我们所熟知的经典的模型去简化问题,就像我们看一个房子,我们想到是不是可以把它看成是方形一样.如果我们已经知道这个房子是三间平房,那么大体上我们就可以用长方体去描述它的轮廓.这个画房子的问题就从无数的可能性中,基于方圆多少里大家都住平房的经验,我们可以假设它是长方体,剩下的问题就是确定长宽高这三个参数了,问题被简化了.再如学生考试的成绩,根据既往的经验,我们可以

最小二乘法和最大似然估计

一:背景:当给出我们一些样本点,我们可以用一条直接对其进行拟合,如y= a0+a1x1+a2x2,公式中y是样本的标签,{x1,x2,x3}是特征,当我们给定特征的大小,让你预测标签,此时我们就需要事先知道参数{a1,a2}.而最小二乘法和最大似然估计就是根据一些给定样本(包括标签值)去对参数进行估计<参数估计的方法>.一般用于线性回归中获得参数进行拟合.而梯度下降方法主要用于逻辑回归分类问题中寻找最佳参数. 二:最小二乘法: 基本思想: 简单地说,最小二乘的思想就是要使得观测点和估计点的距离

极大似然估计

极大似然估计又称最大似然估计,对于一个已知的模型来说,还有些参数是不确定的,但是有了真实数据,那么这些参数可不可计算出呢?或者估计出最有可能的情况? 举个例子,例如有一组来自正态分布(也叫高斯分布)的样本数据,每个样本的数据都独立同分布,比如是正态分布,但正态分布的参数μ,σ都不知道,如果用极大似然估计的方法就可以用这些样本数据就可估计出正态分布中参数.概括起来说,就是用样本来估计总体情况,(调查问卷.人口普查等等其实就暗含这个原理). 假设总体X的分布为f(x:θ1,...θn),其中θ是未知

【MLE】最大似然估计Maximum Likelihood Estimation

模型已定,参数未知 最大似然估计提供了一种给定观察数据来评估模型参数的方法,假设我们要统计全国人口的身高,首先假设这个身高服从服从正态分布,但是该分布的均值与方差未知.我们没有人力与物力去统计全国每个人的身高,但是可以通过采样,获取部分人的身高,然后通过最大似然估计来获取上述假设中的正态分布的均值与方差. 最大似然估计中采样需满足一个很重要的假设,就是所有的采样都是独立同分布的.下面我们具体描述一下最大似然估计: 首先,假设为独立同分布的采样,θ为模型参数,f为我们所使用的模型,遵循我们上述的独

统计参数的最大似然估计

已经介绍了统计参数的举估计,下面介绍另外一种估计,并且比较这两者. 对于一组样本,它们无条件是独立的.那么考虑到联合分布函数与边缘分布函数的关系,利用乘法原理,我们发现,样本的联合分布函数是: (离散) (连续) 又发现,它们是与总体同分布的:,那么连续的情况还可以写作: 现如今上面的式子中存在未知的参数,.把 L 换做以众多未知参数为元,就得到了: 称作是样本的似然函数. 当使得似然函数最大时的样本的参数估计,叫做样本的最大似然估计. 至于如何求之,仅仅是简单的多元函数求值而已. 发现 L 是

『科学计算_理论』最大似然估计

概述 通俗来讲,最大似然估计,就是利用已知的样本结果,反推最有可能(最大概率)导致这样结果的参数值. 重要的假设是所有采样满足独立同分布. 求解模型参数过程 假如我们有一组连续变量的采样值(x1,x2,-,xn),我们知道这组数据服从正态分布,标准差已知.请问这个正态分布的期望值为多少时,产生这个已有数据的概率最大? P(Data | M) = ? 根据公式 可得: 对μ求导可得 ,则最大似然估计的结果为μ=(x1+x2+-+xn)/n 由上可知最大似然估计的一般求解过程: (1) 写出似然函数