Face recognition using Histograms of Oriented Gradients

Face recognition using Histograms of Oriented Gradients

这篇论文的主要内容是将Hog算子应用到人脸识别上。

转载请注明:http://blog.csdn.net/stdcoutzyx/article/details/40757997

1. Main Contribution

  • Extract Hog descriptors from a regular grid.
  • Fusion of HOG descriptors at different scales allows to capture important structure
  • Dimensionality reduction is necessary to make the classification less prone to over-fitting.

2. Feature Conclusion

Features includes geometric or photometric, latter seems to have prevailed in the literature:

  • Eigenfaces( Principal Component Analysis)
  • Gabor wavelets
  • Local Binary Patterns
  • Error-Correcting Output Codes
  • Independent Component Analysis

3. Improved Hog

Improved Hog for invariance to scale and rotation may be also achieved by extracting descriptors from only salient points (key points) in the scale space following a rotation normalization. The steps involved are:

  • Scale-space extrema detection. (achieve scale invariance)
  • Orientation assignment. (find the dominant gradient orientation)
  • Descriptor extraction.

4. Previous Hog representation for faces

In (Albiol et al., 2008), the authors successfully applied Hog to the face recognition.

  • In the 2008 paper, faces are previous normalized in scale and orientation, So the step for scale-space extrema detection were not necessary.
  • A set of 25 facial landmarks were localizaed using Active Apperence Models(AAMs).
  • Hog descriptors are extracted from the vicinity of each of these 25 landmarks.
  • Using nearest neighbor and Enclidean distance to classify.

Drawback of this method:

  • Final error may crucially depend on the reliability of the landmark localizations, and the landmarks are not precisely due to occlusions, strong illuminations or pose changes.

5. Improved Method by this paper

  • First normalize the face and then extract HOG features from a regular grid. The grid is formed by placing equal side patches around a first cell centered in the image, until the whole image is covered.
  • The paper hypothesize that a better result could be obtained by combining information from different patch sizes. And the paper considered a new fusion strategy that is the product combination of the classifiers at patch sizes.
  • Several overlapping patches are used, so the final feature representation will be highly redundant, So dimensionality reduction is necessary.

5.1 Detail of the fusion strategy

  • R individual classifications c_k (k=1,…,R), each one trained using Hog features with different patch sizes. Each classifier gives one input sample x_k a posterior probability vector:

  • The product rule cosists of fusing the final decision as:

6. Experiments

  • Effect of the facial feature localization error on the final recognition performance. Large error on the localization of facial features leads to bad classification performance.

    • Evaluate the performance of the method in 4.
    • Calculate the dispersion of coordinates(ellpse fitting) and the total sum of variances of the localized landmarks. Bigger variance, bad performance.
  • Extracting regular grids and patch size combination
    • Hog features are processed by PCA and LDA.
    • Nearest classifier with Enclidean and cosine distances is used.
    • Combination of 8×8, 12×12, 16×16, 20×20, 24×24, 28×28 patches.
    • Compare of computation time of the landmark method and the regular grid method.

7. Reference

  • [1]. Déniz O, Bueno G, Salido J, et al. Face recognition using histograms of oriented gradients[J]. Pattern Recognition Letters, 2011, 32(12): 1598-1603.
时间: 2024-10-28 20:13:04

Face recognition using Histograms of Oriented Gradients的相关文章

Histograms of Oriented Gradients for Human Detection

Histograms of Oriented Gradients for Human Detection 本文是论文笔记. 转载注明:http://blog.csdn.net/stdcoutzyx/article/details/40299383 Hog算子进行行人检测,是05年在CVPR上发表的经典文章.使用Hog算子提取特征,然后使用SVM来进行分类. 1. Definition Hog Descriptor:locally normalized histogram of gradient

[2005CVPR]Histograms of Oriented Gradients for Human Detection

HOG这种方法跟边缘方向直方图,尺度不变特征变换(SIFT)以及形状上下文方法(shape contexts)有很多相似之处,但与它们的不同点是:HOG描述器是在一个网格密集的大小统一的细胞单元上计算,而且为了提高性能,还采用了重叠的局部对比度归一化.HOG方法是在图像的局部细胞单元上操作,所以它对图像几何和光学的形变都能保持很好的不变性. 算法步骤step1:Gamma/Colour Normalization 作者分别在灰度空间.RGB色彩空间和LAB色彩空间上对图像进行色彩和 伽马归一化,

行人检測之HOG特征(Histograms of Oriented Gradients)

之前的文章行人计数.计次提到HOG特征这个概念,这两天看了一下原版的论文,了解了一下HOG特征的原理,并依据自己的理解将这种方法的流程写了下来,假设有不正确的地方欢迎指正. HOG(Histograms of Oriented Gradients)特征的基本思想:The basic idea is that local object appearance and shape can often be characterized rather well by the distribution of

(转)梯度方向直方图HOG(Histograms of Oriented Gradients )

HOG(Histograms of Oriented Gradients )梯度方向直方图 方向梯度直方图(Histogram of Oriented Gradient, HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子.此方法使用了图像的本身的梯度方向特征,类似于边缘方向直方图方法,SIFT描述子,和上下文形状方法,但其特征在于其在一个网格密集的大小统一的方格单元上计算,而且为了提高精确度使用了重叠的局部对比度归一化的方法. 这篇文章的作者Navneet Dalal和Bi

Histogram of Oriented Gradients for Human Detection 翻译

用于人体检测的方向梯度直方图 Navneet Dalal,Bill Triggs 摘要 我们研究了视觉目标检测的特征集问题,并用线性SVM方法进行人体检测来测试,通过与当前的基于边缘和梯度的描述子进行实验对比,得出方向梯度直方图(Histograms of Oriented Gradient,HOG)描述子在行人检测方面表现更加突出.我们研究了计算过程中每一阶段的影响,得出小尺度梯度(fine-scale gradients).精细方向采样(fine orientation binning).粗

Histogram of Oriented Gridients(HOG) 方向梯度直方图

Histogram of Oriented Gridients,缩写为HOG,是目前计算机视觉.模式识别领域很常用的一种描述图像局部纹理的特征.这个特征名字起的也很直白,就是说先计算图片某一区域中不同方向上梯度的值,然后进行累积,得到直方图,这个直方图呢,就可以代表这块区域了,也就是作为特征,可以输入到分类器里面了.那么,接下来介绍一下HOG的具体原理和计算方法,以及一些引申. 1.分割图像 因为HOG是一个局部特征,因此如果你对一大幅图片直接提取特征,是得不到好的效果的.原理很简单.从信息论角

Histograms of Sparse Codes for Object Detection用于目标检测的稀疏码直方图

AbstractObject detection has seen huge progress in recent years, much thanks to the heavily-engineered Histograms of Oriented Gradients (HOG) features. Can we go beyond gradients and do better than HOG? We provide an affirmative answer by proposing a

总结一些机器视觉库

通用库/General Library OpenCV   无需多言. RAVL  Recognition And Vision Library. 线程安全.强大的IO机制.包含AAM. CImg  很酷的一个图像处理包.整个库只有一个头文件.包含一个基于PDE的光流算法. 图像,视频IO/Image, Video IO FreeImage DevIL ImageMagick FFMPEG VideoInput portVideo AR相关/Augmented Reality ARToolKit 

[转]计算机视觉、机器学习相关领域论文和源代码大集合

计算机视觉.机器学习相关领域论文和源代码大集合--持续更新…… [email protected] http://blog.csdn.net/zouxy09 注:下面有project网站的大部分都有paper和相应的code.Code一般是C/C++或者Matlab代码. 最近一次更新:2013-3-17 一.特征提取Feature Extraction: ·         SIFT [1] [Demo program][SIFT Library] [VLFeat] ·         PCA