ZOJ 3640 Help Me Escape 概率dp

有一个吸血鬼被困了,有n条路可以逃出去,每条路有一个难度c[],他初始的战斗力是f,对于第i条路,若f > c[i]他花t[i]天就能出去,否则,他就停留一天,同时战斗力增加c[i]然后再选一条路走出去,他走每条路的概率是相同的。问他逃出去的天数的期望。

设dp[i]表示在战斗力为i时逃出去的期望值,那么可推出状态方程

dp[i] = 1/n * t[j](c[j] > i),dp[i] = 1/n * (1+dp[ i+c[j] ] )( c[j] <= i)。

需要注意的是终态的确定。当f > Max时,这时的期望值为总时间的平均值便是终态了,但是i + c[j]有可能大于Max+1,所以终态应该是Max*2。初始化时就忘乘2了。

还有就是t[i]是整数。

Description

Background

    If thou doest well, shalt thou not be accepted? and if thou doest not well, sin lieth at the door. And unto thee shall be his desire, and thou shalt rule over him.

And Cain talked with Abel his brother: and it came to pass, when they were in the field, that Cain rose up against Abel his brother, and slew him.

And the LORD said unto Cain, Where is Abel thy brother? And he said, I know not: Am I my brother‘s keeper?

And he said, What hast thou done? the voice of thy brother‘s blood crieth unto me from the ground.

And now art thou cursed from the earth, which hath opened her mouth to receive thy brother‘s blood from thy hand;

When thou tillest the ground, it shall not henceforth yield unto thee her strength; a fugitive and a vagabond shalt thou be in the earth.

—— Bible Chapter 4

Now Cain is unexpectedly trapped in a cave with N paths. Due to LORD‘s punishment, all the paths are zigzag and dangerous. The difficulty of the ith path is ci.

Then we define f as the fighting capacity of Cain. Every day, Cain will be sent to one of the N paths randomly.

Suppose Cain is in front of the ith path. He can successfully take ti days to escape from the cave as long as his fighting capacity f is larger than ci. Otherwise, he has to keep trying day after day. However,
if Cain failed to escape, his fighting capacity would increase ci as the result of actual combat. (A kindly reminder: Cain will never died.)

As for ti, we can easily draw a conclusion that ti is closely related to ci. Let‘s use the following function to describe their relationship:

After D days, Cain finally escapes from the cave. Please output the expectation of D.

Input

The input consists of several cases. In each case, two positive integers N and f (n ≤ 100, f ≤ 10000) are given in the first line. The second line includes N positive integers ci (ci ≤ 10000,
1 ≤ i ≤ N)

Output

For each case, you should output the expectation(3 digits after the decimal point).

Sample Input

3 1
1 2 3

Sample Output

6.889
#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<math.h>
#include<cstring>
using namespace std;
double dp[1000010];
int b[110];
double a=(1+sqrt(5))*0.5;
int main()
{
    int n,f;
    while(~scanf("%d %d",&n,&f))
    {
        int Max=0;
        for(int i=1; i<=n; i++)
        {
            scanf("%d",&b[i]);
            Max=max(Max,b[i]);
        }
        memset(dp,0,sizeof(dp));
        for(int i=2*Max; i>=f; i--)
        {
           dp[i]=0;
            for(int j=1; j<=n; j++)
            {
                if(i>b[j])dp[i]+=(int)(a*b[j]*b[j]);
                else dp[i]+=(1+dp[i+b[j]]);
            }
            dp[i]/=n;
        }
        printf("%.3lf\n",dp[f]);
    }
    return 0;
}
时间: 2024-12-29 11:43:14

ZOJ 3640 Help Me Escape 概率dp的相关文章

zoj 3640 Help Me Escape (概率dp 递归求期望)

题目链接 Help Me Escape Time Limit: 2 Seconds      Memory Limit: 32768 KB Background     If thou doest well, shalt thou not be accepted? and if thou doest not well, sin lieth at the door. And unto thee shall be his desire, and thou shalt rule over him.  

[ACM] ZOJ 3329 One Person Game (概率DP,有环,巧妙转化)

One Person Game Time Limit: 1 Second      Memory Limit: 32768 KB      Special Judge There is a very simple and interesting one-person game. You have 3 dice, namely Die1, Die2 and Die3. Die1 has K1 faces. Die2 has K2 faces. Die3 has K3 faces. All the

ZOJ 3640 Help Me Escape(概率dp+记忆化)

Background     If thou doest well, shalt thou not be accepted? and if thou doest not well, sin lieth at the door. And unto thee shall be his desire, and thou shalt rule over him. And Cain talked with Abel his brother: and it came to pass, when they w

【期望DP】 ZOJ 3640 Help Me Escape

通道 题意:吸血鬼在一个洞穴遍地的地方,他拥有初始战斗力,如果战斗力大于了洞穴的c值他就能花时间逃出去,否则他的战斗力增加c,然后随机选择下一个要去的洞穴,问他出去所花时间的期望 思路:设dp[v] ,表示当能力值为v的时的期望.所以方程很容易写了,dp[v] = sum{ ti/n }(v直接逃出去) + sum { (1 + dp[v + c[i]])/n }(下一次逃出去) ;对于路i,如果v大于路i的限制,那么就能够用ti逃出去,概率为{1/n}否则只能进入下一天的尝试,所以需要用的时间

zoj 3640 Help Me Escape(期望)

http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4808 被这道题坑惨了. 有一个吸血鬼被困了,有n条路可以逃出去,每条路有一个难度c[],他初始的战斗力是f,对于第i条路,若f > c[i]他花t[i]天就能出去,否则,他就停留一天,同时战斗力增加c[i]然后再选一条路走出去,他走每条路的概率是相同的.问他逃出去的天数的期望. 设dp[i]表示在战斗力为i时逃出去的期望值,那么可推出状态方程 dp[i] = 1/n * t[

zoj 3640 Help Me Escape

Help Me Escapehttp://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4808 Time Limit: 2 Seconds      Memory Limit: 32768 KB Background     If thou doest well, shalt thou not be accepted? and if thou doest not well, sin lieth at the door. And unto

zoj 3329 One Person Game 概率dp

先吐槽几句真心给数学跪了 题意: 有三个均匀的骰子,分别有k1,k2,k3个面,初始分数是0, 当掷三个骰子的点数分别为a,b,c的时候,分数清零,否则分数加上三个骰子的点数和, 当分数>n的时候结束.求需要掷骰子的次数的期望. 题解: 设 E[i]表示现在分数为i,到结束游戏所要掷骰子的次数的期望值. 显然 E[>n] = 0; E[0]即为所求答案; E[i] = ∑Pk*E[i+k] + P0*E[0] + 1; (Pk表示点数和为k的概率,P0表示分数清零的概率) 由上式发现每个 E[

ZOJ 3329 One Person Game 概率DP 好题

One Person Game Time Limit: 1 Second      Memory Limit: 32768 KB      Special Judge There is a very simple and interesting one-person game. You have 3 dice, namely Die1, Die2 and Die3. Die1 has K1 faces. Die2 has K2 faces. Die3 has K3faces. All the d

ZOJ 3329-One Person Game(概率dp,迭代处理环)

题意: 三个色子有k1,2,k3个面每面标号(1-k1,1-k2,1-k3),一次抛三个色子,得正面向上的三个编号,若这三个标号和给定的三个编号a1,b1,c1对应则总和置零,否则总和加上三个色子标号和,直到总和不小于n时结束,求抛色子的期望次数. 分析: 该题状态好分析 dp[i]表示和为i时的期望次数,dp[0]是答案 dp[i]=sum(dp[i+tmp]*p[tmp])+dp[0]*p0+1(tmp是三个色子可得到的标号和); 第一次看到这样的方程不怎么解,看了题解才知道用迭代法,每个d