Python机器学习简介 第一章 让计算机从数据中学习 将数据转化为知识 三类机器学习算法 第二章 训练机器学习分类算法 透过人工神经元一窥早期机器学习历史 使用Python实现感知机算法 基于Iris数据集训练感知机模型 自适应线性神经元及收敛问题 Python实现自适应线性神经元 大规模机器学习和随机梯度下降 第三章 使用Scikit-learn进行分类器之旅 如何选择合适的分类器算法 scikit-learn之旅 逻辑斯蒂回归对类别概率建模 使用正则化解决过拟合 支持向量机 使用松弛变量解决非线性可分的情况 使用核SVM解决非线性问题 决策树学习 最大信息增益 构建一棵决策树 随机森林 k近邻——一个懒惰学习算法 总结 第四章 构建一个好的训练集---数据预处理 处理缺失值 消除带有缺失值的特征或样本 改写缺失值 理解sklearn中estimator的API 处理分类数据 将数据集分割为训练集和测试集 统一特征取值范围 选择有意义的特征 利用随机森林评估特征重要性 总结 第五章 通过降维压缩数据 PCA进行无监督降维 聊一聊方差 特征转换 LDA进行监督数据压缩 原始数据映射到新特征空间 使用核PCA进行非线性映射 用Python实现核PCA 映射新的数据点 sklearn中的核PCA 总结 第六章 模型评估和调参 通过管道创建工作流 K折交叉验证评估模型性能 使用学习曲线和验证曲线 调试算法 通过网格搜索调参 通过嵌套交叉验证选择算法 不同的性能评价指标 第七章 集成学习 集成学习 结合不同的分类算法进行投票 第八章 深度学习之PyTorch 原文地址:https://www.cnblogs.com/aibbt/p/8547102.html 时间: 2024-10-13 16:00:31
许多机器学习算法都有一个假设:输入数据要是线性可分的.感知机算法必须针对完全线性可分数据才能收敛.考虑到噪音,Adalien.逻辑斯蒂回归和SVM并不会要求数据完全线性可分. 但是现实生活中有大量的非线性数据,此时用于降维的线性转换手段比如PCA和LDA效果就不会太好.这一节我们学习PCA的核化版本,核PCA.这里的"核"与核SVM相近. 运用核PCA,我们能将非线性可分的数据转换到新的.低维度的特征子空间,然后运用线性分类器解决. 核函数和核技巧 还记得在核SVM那里,我们讲过解决非
集成学习背后的思想是将不同的分类器进行组合得到一个元分类器,这个元分类器相对于单个分类器拥有更好的泛化性能.比如,假设我们从10位专家那里分别得到了对于某个事件的预测结果,集成学习能够对这10个预测结果进行组合,得到一个更准确的预测结果. 后面我们会学到,有不同的方法来创建集成模型,这一节我们先解决一个基本的问题:为什么要用集成学习?她为什么就比单个模型效果要好呢? 本书是为初学者打造的,所以集成学习这里我们也只关注最基本的集成方法:投票法(majority voting).投票法意味着我们在得
这一节我们学习两个非常有用的诊断方法,可以用来提高算法的表现.他们就是学习曲线(learning curve)和验证曲线(validation curve).学习曲线可以判断学习算法是否过拟合或者欠拟合. 使用学习曲线判别偏差和方差问题 如果一个模型相对于训练集来说过于复杂,比如参数太多,则模型很可能过拟合.避免过拟合的手段包含增大训练集,但这是不容易做到的.通过画出不同训练集大小对应的训练集和验证集准确率,我们能够很轻松滴检测模型是否方差偏高或偏差过高,以及增大训练集是否有用. 上图的左上角子
这一节学习使用sklearn进行投票分类,看一个具体的例子,数据集采用Iris数据集,只使用sepal width和petal length两个维度特征,类别我们也只是用两类:Iris-Versicolor和Iris-Virginica,评判标准使用ROC AUC. Python机器学习中文版目录(http://www.aibbt.com/a/20787.html) 转载请注明出处,Python机器学习(http://www.aibbt.com/a/pythonmachinelearning/)
最新出版的Python机器学习经典实例.高清中文版和高清英文版对比学习, 带目录书签,可复制粘贴:讲解详细并配有源代码. 下载:https://pan.baidu.com/s/170qEhYJ4T4IlQwuwASRIfA 一块儿学习探讨,支持正版书籍. 在博客写python学习心得. 原文地址:http://blog.51cto.com/3215120/2300021
下载:https://pan.baidu.com/s/11dGldpITOoUUJmS9eD5ENw Python机器学习实践指南(高清中文版PDF+高清英文版PDF+源代码) 中文和英文两版对比学习, 带目录书签,可复制粘贴:讲解详细并配有源代码. 其中,高清中文版如图: 原文地址:http://blog.51cto.com/3215120/2301528
下载:https://pan.baidu.com/s/1sfaOZmuRj14FWNumGQ5ahw 更多资料分享:http://blog.51cto.com/3215120 <Python机器学习-预测分析核心算法>高清中文版PDF+高清英文版PDF+源代码高清中文版,338页,带目录和书签,文字能够复制粘贴.高清英文版,361页,带目录和书签,文字能够复制粘贴.中英文两版对比学习.配套源代码.经典书籍,讲解详细. 其中,高清中文版如图所示: 原文地址:http://blog.51cto.c
资源链接:https://pan.baidu.com/s/1J61jH-fqwGceoId6F8mr5Q<Python机器学习-预测分析核心算法>高清中文版PDF+高清英文版PDF+源代码高清中文版,338页,带目录和书签,文字能够复制粘贴.高清英文版,361页,带目录和书签,文字能够复制粘贴.中英文两版对比学习.配套源代码.经典书籍,讲解详细.其中,高清中文版如图所示: 原文地址:http://blog.51cto.com/14063572/2317037
资源链接:https://pan.baidu.com/s/1sa64QTsQ7A5WlZxMuNmYHg<Python机器学习基础教程>高清中文版PDF+高清英文版PDF+源代码高清中文版PDF,306页,带目录和书签,文字能够复制粘贴:高清英文版PDF,392页,带目录和书签,彩色配图,文字能够复制粘贴:中英文两版可以对比学习.配套源代码:经典书籍,讲解详细:其中,高清中文版如图: 原文地址:http://blog.51cto.com/14063572/2317004