Hulu机器学习问题与解答系列 | 十七:随机梯度下降算法之经典变种

这是本周第二篇机器学习,也是Hulu面试题系列的第十七篇了~ 之前的所有内容都可以在菜单栏的“机器学习”中找到,愿你温故,知新。

今天的内容是

【随机梯度下降算法之经典变种】

场景描述

提到Deep Learning中的优化方法,人们都会想到Stochastic Gradient Descent (SGD),但是SGD并不是理想的万金油,反而有时会成为一个坑。当你设计出一个deep neural network时,如果只知道用SGD来训练,不少情况下你得到一个很差的训练结果,于是你放弃继续在这个深度模型上投入精力。但可能的原因是,SGD在优化过程中失效了,导致你丧失了一次新发现的机会。

问题描述

Deep Learning中最常用的优化方法是SGD,但是SGD有时候会失效,无法给出满意的训练结果,这是为什么?为了改进SGD,研究者都做了哪些改动,提出了哪些SGD变种,它们各有哪些特点?

背景知识假设:Gradient Descent Method, 

Stochastic Gradient Descent Method

解答与分析

(1)SGD失效的原因——摸着石头下山

为了回答第一个问题,我们先做一个形象的比喻:想象一下你是一个下山的人,眼睛很好,能看清自己所在位置的坡度,那么沿着坡向下走,最终你会走到山底。现在你被蒙上双眼,只能凭脚底踩石头的感觉判断当前位置的坡度,精确性大大下降。有时候你认为的坡,实际上可能不是坡,走上一段时间发现没有下山,或者曲曲折折走了好多弯路才下山。

我们回到SGD,传统的Gradient Descent(也称Batch Gradient Descent)是带着眼睛下山,而SGD是蒙着眼睛下山。Gradient Descent的每一步,为了获取准确的梯度,把整个训练集载入模型中计算,时间花费和内存开销非常大,无法用于实际中大数据集和大模型的场景。SGD放弃了对梯度准确性的追求,每步仅仅随机采样少量样本来计算梯度,计算速度快,内存开销小,但是由于每步接受的信息量有限,对梯度的估计常常出现偏差,造成目标函数曲线收敛得很不稳定,伴有剧烈波动,甚至有时出现不收敛的情况。图1展示了GD与SGD在优化过程中的参数轨迹,可以看到GD稳定地逼近最低点,而SGD曲曲折折简直是“黄河十八弯”。

图1 GD与SGD的参数优化轨迹

进一步地,有人会说deep learning优化问题本身就很难,有太多局部最优点的陷阱。没错,这个陷阱对SGD和GD都是普遍存在的。但对SGD来说,可怕的不是局部最优点,而是两类地形——山谷和鞍点[1]。山谷顾名思义就是狭长的山间小道,左右两边是峭壁;鞍点的形状像是一个马鞍,一个方向上两头翘,另一个方向上两头垂,而中心区域是一片近乎水平的平地。

为什么SGD最害怕遇上这两类地形呢?在山谷中,准确的梯度方向是沿山道向下,稍有偏离就会撞向山壁,而SGD粗糙的梯度估计使得它在两山壁间来回反弹震荡,不能沿山道方向迅速下降,导致收敛不稳定和收敛速度慢;在鞍点处,SGD走入一片平坦之地(此时离最低点还很远,故也称plateau),想象一下蒙着双眼只凭借脚底感觉坡度,如果坡度很明显那么不精确也能估计出下山的大致方向,但是如果坡度不明显那么很可能走错方向,同样在几近零的梯度区域,对梯度微小变化无法准确察觉的SGD蒙圈了,结果停滞下来。

(2)解决之道——惯性保持和环境感知

SGD本质上是采用迭代方式更新参数,每次迭代在当前位置的基础上,沿着某一方向迈一小步抵达下一位置,然后在下一位置接着这么做。SGD的更新公式是:

其中当前估计的梯度﹣gt表示步子的方向,学习速率η控制步子的大小。改造SGD仍然基于这个更新形式。

变种1:Momentum

为了解决SGD的山谷震荡和鞍点停滞的问题,我们做一个简单的思维实验。想象一下纸团在山谷和鞍点处的运动轨迹,在山谷中纸团受重力作用沿山道滚下,两边是不规则的山壁,纸团不可避免地撞在山壁,由于质量小受山壁弹力的干扰大,从一侧山壁反弹回来撞向另一侧山壁,结果来回震荡地滚下;当纸团来到鞍点的一片平坦之地时,还是由于质量小,速度很快减为零。纸团的情况和SGD遇到的问题简直如出一辙。直觉上,如果换成一个铁球,当沿山谷滚下时,会不容易受到途中旁力的干扰,轨迹更稳更直;当来到鞍点中心处,在惯性作用下继续前行,从而有机会冲出这片平坦的陷阱。因此,我们有了Momentum的方法[2],更新公式为

前进步子﹣vt由两部分组成:(1) 学习速率η和当前估计梯度gt,(2) 衰减下的前一次步子vt-1。这里,惯性就体现在对前次步子信息的重利用上。拿中学物理作个类比,当前梯度就好比当前时刻受力产生的加速度,前一次步子好比前一时刻的速度,当前步子好比当前时刻的速度,为了计算当前时刻的速度,我们应当考虑前一时刻速度和当前加速度共同作用的结果,因此vt直接依赖于vt-1gt,而不是仅有gt。另外,衰减系数γ扮演了阻力的作用。

中学物理还告诉我们,刻画惯性的物理量是动量,这也是算法名字的由来。沿山谷滚下的铁球,会受到两个方向上的力:沿坡道向下的力和与左右山壁碰撞的弹力。向下的力稳定不变,产生的动量不断累积,速度越来越快;左右的弹力总是在不停切换,动量累积的结果是相互抵消,自然减弱了球的来回震荡。因此,与SGD相比,Momentum的收敛速度快,收敛曲线稳定。

变种2:AdaGrad

惯性的获得是基于历史信息的。那么,除了从过去的步伐中获得一股子向前冲的劲儿,我们还能获得什么?我们期待获得对周围环境的感知,即使蒙上双眼,依靠前几次迈步的感觉,我们也应该能判断出一些信息,比如这个方向总是坑坑洼洼的,那个方向可能很平坦。

具体到SGD中,对环境的感知是指在参数空间中,对不同参数方向上的经验性判断,确定这个参数的自适应学习速率,即更新不同参数的步子大小应是不同的。在一些任务中,如文本处理中训练word embeddings参数,有的words频繁出现,有的则极少出现,数据的稀疏导致相应参数的梯度稀疏,即不频繁出现words的参数大多数情况梯度为零,使得这些参数被更新的频率很低,因此我们希望更新它们的步子大些,而对频繁更新的参数,更新的步子小些。AdaGrad[2]采用过往梯度平方和

的方式来衡量不同参数的梯度稀疏性,和越小表明越稀疏。AdaGrad的更新公式是:

其中θt+1,i表示θt+1的第i个参数。另外,分母中和的形式实现了退火的过程,这是很多优化技术中常见的策略,意味着随着时间推移,学习速率

越来越小,从而保证了优化的最终收敛。

变种3:Adam

Adam方法[4]将惯性保持和环境感知这两个优点集于一身。一方面,Adam记录梯度的first moment,即过往梯度与当前梯度的平均,这体现了惯性保持;另一方面,Adam还记录梯度的second moment,即过往梯度平方与当前梯度平方的平均,这类似AdaGrad,体现了环境感知,为不同参数产生自适应的学习速率。First moment和second moment求平均的思想类似滑动窗口内求平均的做法,关注当前梯度和近一段时间内梯度的平均值,时间久远的梯度对当前平均的贡献呈指数衰减,具体采用指数衰退平均(exponential decay average)技术,计算公式为:

其中β1β2为衰减系数。

如何理解first moment和second moment呢?First moment相当于估计,由于当下梯度gt是随机采样估计的结果,比起gt我们更关心它在统计意义上的期望;second moment相当于估计,这点与AdaGrad不同,不是从开始到现在的和而是它的期望。它们的物理意义是:当‖mt‖大vt大时,梯度大且稳定,表明遇到一个明显的大坡,前进方向明确;当‖mt‖趋零vt大时,梯度不稳定,可能遇到一个峡谷,容易引起反弹震荡;当‖mt‖大vt趋零时,这种情况不可能出现;当‖mt‖趋零vt趋零时,梯度趋零,可能到达局部最低点,也可能走到一片坡度极缓的平地,此时要避免陷入plateau。另外,Adam还考虑了mtvt在零初始值情况下的偏置矫正。Adam的更新公式为:

扩展阅读

除了上述三种SGD变种,研究者还提出了其他方法:

1. Nesterov Accelerated Gradient:扩展了Momentum方法,顺着惯性方向,计算未来可能位置处的梯度而非当前位置的梯度,这个“提前量”的设计让算法有了对前方环境预判的能力。

2. AdaDelta和RMSProp:这两个方法非常类似,是对AdaGrad的改进。AdaGrad采用所有过往梯度平方和的平方根做分母,分母随时间单调递增,产生的自适应学习速率随时间衰减的速度过于激进,因此AdaDelta和RMSProp采用指数衰退平均的计算方法,用过往梯度的均值代替它们的和。

3. AdaMax:基于Adam的一个变种,对梯度平方的处理由指数衰退平均改为指数衰退求max。

4. Nadam:可看成Nesterov Accelerated Gradient版的Adam。

参考文献:

[1] Yann N. Dauphin, Razvan Pascanu, Caglar Gulcehre, Kyunghyun Cho, Surya Ganguli, and Yoshua Bengio. Identifying and attacking the saddle point problem in high-dimensional nonconvex optimization. arXiv, pages 1–14, 2014

[2] Ning Qian. On the momentum term in gradient descent learning algorithms. Neural networks: the official journal of the International Neural Network Society, 12(1):145–151, 1999

[3] John Duchi, Elad Hazan, and Yoram Singer. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization. Journal of Machine Learning Research, 12:2121–2159, 2011

[4] Diederik P. Kingma and Jimmy Lei Ba. Adam: a Method for Stochastic Optimization. InternationalConference on Learning Representations, pages 1–13, 2015.



下一题预告

【SVM – 核函数与松弛变量】

场景描述

当我们在SVM中处理线性不可分的数据时,核函数可以对数据进行映射,从而使得原问题在某种度量下具有更为可分的相似度,而通过引入松弛变量,我们可以放弃一些离群点的精确分类来使分类平面不受太大的影响。将这两种技术与SVM结合起来,正是SVM分类器简洁而强大的原因之一。

问题描述

  1. 一个使用高斯核

    训练的SVM(Support Vector Machine)中,试证明若给定训练集中不存在两个点在同一位置,则存在一组参数{α1, ... αmb}以及参数γ使得该SVM的训练误差为0。

  2. 若我们使用问题1中得到的参数γ训练一个不加入松弛变量的SVM,是否能保证得到的SVM,仍有训练误差为0的结果,试说明你的观点。
  3. 若我们使用SMO(Sequential Minimal Optimization)算法来训练一个带有松弛变量的SVM,并且惩罚因子C为任意事先不知道的常数,我们是否仍能得到训练误差为0的结果,试说明你的观点。

原文地址:https://www.cnblogs.com/peizhe123/p/8480591.html

时间: 2024-11-06 07:31:03

Hulu机器学习问题与解答系列 | 十七:随机梯度下降算法之经典变种的相关文章

Hulu机器学习问题与解答系列 | 二十四:随机梯度下降法

Hulu优秀的作者们每天和公式抗争,只为提升你们的技能,感动的话就把文章看完,然后哭一个吧. 今天的内容是 [随机梯度下降法] 场景描述 深度学习得以在近几年迅速占领工业界和学术界的高地,重要原因之一是数据量的爆炸式增长.如下图所示,随着数据量的增长,传统机器学习算法的性能会进入平台期,而深度学习算法因其强大的表示能力,性能得以持续增长,甚至在一些任务上超越人类.因此有人戏称,"得数据者得天下". 经典的优化方法,例如梯度下降法,每次迭代更新需要用到所有的训练数据,这给求解大数据.大规

Hulu机器学习问题与解答系列 | 十九:主题模型

今天的内容是 [主题模型] 场景描述 基于Bag-Of-Words(或N-gram)的文本表示模型有一个明显的缺陷,就是无法识别出不同的词(或词组)具有相同主题的情况.我们需要一种技术能够将具有相同主题的词(或词组)映射到同一维度上去,于是产生了主题模型(Topic Model).主题模型是一种特殊的概率图模型.想象一下我们如何判定两个不同的词具有相同的主题呢?这两个词可能有更高的概率出现在同一主题的文档中:换句话说,给定某一主题,这两个词的产生概率都是比较高的,而另一些不太相关的词产生的概率则

Hulu机器学习问题与解答系列 | 二十三:神经网络训练中的批量归一化

来看看批量归一化的有关问题吧!记得进入公号菜单"机器学习",复习之前的系列文章噢. 今天的内容是 [神经网络训练中的批量归一化] 场景描述 深度神经网络的训练中涉及诸多手调参数,如学习率,权重衰减系数,Dropout比例等,这些参数的选择会显著影响模型最终的训练效果.批量归一化(Batch Normalization, BN)方法从数据分布入手,有效减弱了这些复杂参数对网络训练产生的影响,在加速训练收敛的同时也提升了网络的泛化能力. 问题描述 BN基本动机与原理是什么? BN的具体实现

Hulu机器学习问题与解答系列 | 十一:Seq2Seq

你可以点击菜单栏的"机器学习",回顾本系列前几期的全部内容,并留言发表你的感悟与想法. 今天的内容是 [Seq2Seq] 场景描述 作为生物体,我们的视觉和听觉会不断地获得带有序列的声音和图像信号,并交由大脑理解:同时我们在说话.打字.开车等过程中,也在不断地输出序列的声音.文字.操作等信号.在互联网公司日常要处理的数据中,也有很多是以序列形式存在的,例如文本.语音.视频.点击流等等.因此如何更好的对序列进行建模,一向是研究的要点. 2013年来,随着深度学习的发展,Seq2Seq(s

Hulu机器学习问题与解答系列 | 二十二:特征工程—结构化数据

听说最近冒出的大批呱儿子个个都是撑着眼皮也要看书的无眠小青蛙.我们学习Machine Learning的脚步又怎能停下来?动动手指,上滑开始~ 今天的内容是 [特征工程-结构化数据] 场景描述 特征工程是指结合问题寻找有效的特征并进行处理成适合模型的输入形式.机器学习中有句经典的话叫做"Garbage in, garbage out",意思是如果输入的数据是垃圾,那么得到的结果也是垃圾.可以看出模型成败的关键并不仅仅取决于模型的选取,还取决于我们是否有根据特定的问题找到了行之有效的输入

Hulu机器学习问题与解答系列 | 十二:注意力机制

几天不见想死你们啦~ 今儿的课题很好玩,跟上队伍一起来读! 今天的内容是 [注意力机制] 场景描述 作为生物体,我们的视觉和听觉会不断地获得带有序列的声音和图像信号,并交由大脑理解:同时我们在说话.打字.开车等过程中,也在不断地输出序列的声音.文字.操作等信号.在互联网公司日常要处理的数据中,也有很多是以序列形式存在的,例如文本.语音.视频.点击流等.因此如何更好的对序列进行建模,一向是研究的要点. 为了解决这些问题,注意力机制(attention mechanism)被引入Seq2Seq模型中

Hulu机器学习问题与解答系列 | 十四:如何对高斯分布进行采样

欢迎回到"采样"系列~ 今天的内容是 [如何对高斯分布进行采样] 场景描述 高斯分布,又称正态分布,是一个在数学.物理及工程领域都非常重要的概率分布.在实际应用中,我们经常需要对高斯分布进行采样.虽然在很多编程语言中,直接调用一个函数就可以生成高斯分布随机数,但了解其中的具体算法能够加深我们对相关概率统计知识的理解:此外,高斯分布的采样方法有多种,通过展示不同的采样方法在高斯分布上的具体操作以及性能对比,我们会对这些采样方法有更直观的印象. 问题描述 如果让你来实现一个高斯分布随机数生

Hulu机器学习问题与解答系列 | 第八弹:强化学习 (二)

答应你们的解答部分来啦! "视频游戏里的强化学习" 场景描述 游戏是强化学习最有代表性也是最合适的应用领域之一,其几乎涵盖了强化学习所有的要素,例如环境:游戏本身的状态,动作:用户操作,机器人:程序,回馈:得分.输赢等.通过输入原始像素来玩视频游戏,是人工智能成熟的标志之一.雅达利(Atari)是20世纪七八十年代红极一时的电脑游戏,类似于国内的红白机游戏,但是画面元素要更简单一些.它的模拟器相对成熟简单,使用雅达利游戏来测试强化学习,是非常合适的.应用场景可以描述为:在离散的时间轴上

机器学习问题与解答系列(17-24)

老朋友了,还用多说什么吗?点击下面的链接复习咯: 17. 随机梯度下降算法之经典变种 18. SVM-核函数与松弛变量 19. 主题模型 20. PCA最小平方误差理论 21. 分类.排序.回归模型的评估 22. 特征工程-结构化数据 23. 神经网络训练中的批量归一化 24. 随机梯度下降法 你可以留言发表复习之后的新感悟,也许会在新的推送中看到你自己的思考噢- 不明白的地方也欢迎向作者提问,小编会在第一时间给予反馈. 日常唠叨还是要有的: 关注Hulu公众号,就可以在每周看到两篇机器学习问题