ACM数论-欧几里得与拓展欧几里得

ACM数论——欧几里得与拓展欧几里得


欧几里得算法:

  欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。

  基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b)。

int gcd(int a,int b)
{
     return b ? gcd(b,a%b) : a;
}

扩展欧几里德算法:

  基本算法:对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在整数对 x,y ,使得 gcd(a,b)=ax+by。

  证明:设 a>b。

  1. 显然当 b=0,gcd(a,b)=a。此时 x=1,y=0;

  2. ab!=0 时

  设 ax1+by1=gcd(a,b);

  bx2+(a mod b)y2=gcd(b,a mod b);

  根据朴素的欧几里德原理有 gcd(a,b)=gcd(b,a mod b);

  则:ax1+by1=bx2+(a mod b)y2;

  即:ax1+by1=bx2+(a-(a/b)*b)y2=ay2+bx2-(a/b)*by2;

  根据恒等定理得:x1=y2; y1=x2-(a/b)*y2;

这样我们就得到了求解 x1,y1 的方法:x1,y1 的值基于 x2,y2.

   上面的思想是以递归定义的,因为 gcd 不断的递归求解一定会有个时候 b=0,所以递归可以结束。

int exgcd(int a,int b,int &x,int &y)
{
    if(b==0)
    {
        x=1;
        y=0;
        return a;
    }
    int r=exgcd(b,a%b,x,y);
    int t=x;
    x=y;
    y=t-a/b*y;
    return r;
}

扩展欧几里德算法的应用主要有以下三方面:

(1)求解不定方程;

(2)求解模线性方程(线性同余方程);

(3)求解模的逆元;

  用扩展欧几里得算法解不定方程ax+by=c:

bool linear_equation(int a,int b,int c,int &x,int &y)
{
    int d=exgcd(a,b,x,y);
    if(c%d)
        return false;
    int k=c/d;
    x*=k; y*=k;    //求得的只是其中一组解
    return true;
}

  求出解之间的间隔,那么就可以求出模的线性方程的解集:

bool modular_linear_equation(int a,int b,int n)
{
    int x,y,x0,i;
    int d=exgcd(a,n,x,y);
    if(b%d)
        return false;
    x0=x*(b/d)%n;   //特解
    for(i=1;i<d;i++)
        printf("%d\n",(x0+i*(n/d))%n);
    return true;
}

  用扩展欧几里得求解逆元是一种常用的方法

你是否经常遇到过类似的问题 ,(A/B)%Mod  。此时,要先计算B%Mod的逆元p, 其实他是用逆元解决的典型题目。但是在使用逆元时候你需满足一下两个条件才能保证得到正确的结果。

  1.  gcd(B,Mod) == 1,显然素数肯定是有逆元的。
  2.  这里B需要是A的因子

  下面就给出扩展欧几里得的典型式子:a*x + b*y = 1    。求得x即为a%b的逆元; y即为b%a的逆元。

另一种方法是:p = b^(Mod-2) % Mod,因为b^(Mod-1)%Mod = 1(这里需要Mod为素数),因为这种方法不常用,因此这里不再详细介绍。

下面就给出求解逆元的模版(代码非原创)

扩展欧几里德求逆元模板:

    #include<iostream>
    #define __int64 long long
    using namespace std;
    //举例 3x+4y=1 ax+by=1
    //得到一组解x0=-1,y0=1 通解为x=-1+4k,y=1-3k
    inline __int64 extend_gcd(__int64 a,__int64 b,__int64 &x,__int64 &y)//ax+by=1返回a,b的gcd,同时求的一组满足题目的最小正整数解
    {
        __int64 ans,t;
        if(b==0){x=1;y=0;return a;}
        ans=extend_gcd(b,a%b,x,y);t=x;x=y;y=t-(a/b)*y;
        return ans;
        }
    //(a/b)%mod=c 逆元为p,(p*b)%mod=1
    //(a/b)*(p*b)%mod=c*1%mod=c
    // (p*b)%mod=1 等价于 p*b-(p*b)/mod*mod=1其中要求p,b已知 等价于 ax+by=1
    //其中x=p(x就是逆元),y=p/mod,a=b,b=b*mod 那么调用extend_gcd(b,b*mod,x,y)即可求(a/b)%mod的逆元等价于a*p%mod
    int main()
    {
        __int64 a,b,x,y,c,gcd,mod,p;//ax+by=c
        while(cin>>a>>b>>c)
        {
              gcd=extend_gcd(a,b,x,y);
              cout<<x<<"  "<<y<<endl;
              if(c%gcd){cout<<"无解!"<<endl;continue;}
              cout<<"x="<<x*c/gcd<<" y="<<y*c/gcd<<endl;
          }
        return 0;
     }

    void extend_Euclid(int a, int b)
    {
        if(b==0)
        {
            x = 1;
            y = 0;
            return;
        }
        extend_Euclid(b, a%b);
        int t = x;
        x = y;
        y = t - a/b*y;
    }  

    int main()
    {
        //b%mod的逆元
        int b,mod;
        while(cin>>b>>mod){
           // x=0;y=0;
            extend_Euclid(b,mod);
            cout<<(x%mod+mod)%mod<<endl;
        }
        return 0;
    }  

原文地址:https://www.cnblogs.com/slp0622/p/8998652.html

时间: 2024-11-10 13:15:48

ACM数论-欧几里得与拓展欧几里得的相关文章

欧几里得 &amp; 拓展欧几里得算法 讲解 (Euclid &amp; Extend- Euclid Algorithm)

欧几里得& 拓展欧几里得(Euclid & Extend-Euclid) 欧几里得算法(Euclid) 背景: 欧几里德算法又称辗转相除法,用于计算两个正整数a,b的最大公约数.                                                                                                                                               --百度百科 代码: 递推的代

数论之拓展欧几里得求解不定方程和同余方程组(一)

今天接到scy的压缩包,开始做数论专题.那今天就总结一下拓展欧几里得求解不定方程和同余方程组. 首先我们复习一下欧几里得算法: 1 int gcd(int a,int b){ 2 if(b==0) return a; 3 return gcd(b,a%b);4 } 拓展欧几里得算法: 推导过程: 给出A和B,求它们的最大公约数,并且求出x和y,满足Ax+By=gcd(A,B). 当A=0时,x=0,y=1; 当A>0时, 因为exgcd(A,B,x,y)表示Ax+By=gcd(A,B) 而且ex

[zoj 3774]Power of Fibonacci 数论(二次剩余 拓展欧几里得 等比数列求和)

Power of Fibonacci Time Limit: 5 Seconds      Memory Limit: 65536 KB In mathematics, Fibonacci numbers or Fibonacci series or Fibonacci sequence are the numbers of the following integer sequence: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, .

拓展欧几里得模板

数论拓展欧几里得,计算mx+ny=d的一组解(m.n为已知) int xx=x+n/d*i; int yy=y-m/d*i;//xx,yy分别为其它通解 void extend_gcd(int a,int b,int &x,int &y,int &d) { if(!b) { x=1; y=0; d=a; return; } extend_gcd(b,a%b,x,y,d); int t=x-a/b*y; x=y; y=t; }

拓展欧几里得详解 及其题目 POJ 1061 2115 2142 UVA 10673 10090

最近做了一些拓展欧几里得的题目呢,嘛,从一开始的不会到现在有点感觉,总之把我的经验拿出来和大家分享一下吧. 普通的欧几里得是用于解决求两个数a,b的gcd的,但是我们知道,gcd是线性组合 { ax+by | x,y∈Z }里的最小正元素(什么?不知道怎么来的?好吧...算法导论里数论算法那一章有证明),假若我们能够把这个x和y找出来,那么可以用来解决很多问题. (以下的gcd和lcm均指(gcd(a,b)和lcm(a,b)) 首先,假设ax+by=gcd这一个方程有一个特解x*,y*.那么显然

(转)拓展欧几里得讲解

拓展欧几里得 扩展欧几里得算法介绍: 前置知识:欧几里得算法(其实就是辗转相除法,用于计算两个整数a,b的最大公约数.) 欧几里得算法: 在开始之前,我们先说明几个定理: gcd(a,b)=gcd(b,a)=gcd(-a,b)=gcd(|a|,|b|) 公式表述及证明 gcd(a,b)=gcd(b,a mod b) 证明:a可以表示成a = kb + r,则r = a mod b 假设d是a,b的一个公约数,则有 d|a, d|b,而r = a - kb,因此d|r 因此d是(b,a mod b

bzoj4517: [Sdoi2016]排列计数--数学+拓展欧几里得

这道题是数学题,由题目可知,m个稳定数的取法是Cnm 然后剩下n-m本书,由于编号为i的书不能放在i位置,因此其方法数应由错排公式决定,即D(n-m) 错排公式:D[i]=(i-1)*(D[i-1]+D[i-2]); 所以根据乘法原理,答案就是Cnm * D(n-m) 接下来就是怎么求组合数的问题了 由于n≤1000000,因此只能用O(n)的算法求组合,这里用乘法逆元(inv[])来辅助求组合数 即 Cnm = n! / ((n-m)! * m!) = fac[n]*inv[n-m]*inv[

uva 10413 - Crazy Savages(拓展欧几里得)

题目链接:uva 10413 - Crazy Savages 题目大意:一座山有m个山洞,形成一个圈,现在有n个部落的人,每个部落一开始住在ci山洞,第2天会向后面移动pi个位置,一共会在这座山住li天.现在如果两个部落在同一个山洞相遇,则会发生战争,问说m最小时多少的时候,保证不会发生争斗. 解题思路:因为每个部落都有自己的存在时间,所以枚举m,然后枚举两个部落,判断他们有没有可能相遇. 假设在第k天: ci+k?pi=a?m???(1) cj+k?pj=b?m???(2) 由(2)-(1)得

uva 10548 - Find the Right Changes(拓展欧几里得)

题目链接:uva 10548 - Find the Right Changes 题目大意:给定A,B,C,求x,y,使得xA+yB=C,求有多少种解. 解题思路:拓展欧几里得,保证x,y均大于等于0,确定通解中t的取值. #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> using namespace std; typedef long long ll; co