Spark RDD Union

示例

Spark多个RDD(数据格式相同)“组合”为一个RDD

代码

 

from pyspark import SparkConf, SparkContext

conf = SparkConf().setAppName("spark_app_union")

sc = SparkContext(conf=conf)

rdd1 = sc.parallelize(["line1", "line2", "line3"])

rdd2 = sc.parallelize(["line4", "line5"])

datas = rdd1.union(rdd2).collect()

sc.stop()

# [‘line1‘, ‘line2‘, ‘line3‘, ‘line4‘, ‘line5‘]
print datas
时间: 2024-10-07 07:43:37

Spark RDD Union的相关文章

Spark RDD Transformation 简单用例(一)

map(func) /** * Return a new RDD by applying a function to all elements of this RDD. */ def map[U: ClassTag](f: T => U): RDD[U]  map(func) Return a new distributed dataset formed by passing each element of the source through a function func.  将原RDD中的

通过一系列破坏行为加深对spark RDD 的理解(或者是猜测)(python 版)

这个实验由一个实验案例产生,实验中,需要对一个数据集进行维护,其中有一个需要对数据一条条进行插入: 下面是最二的写法: rdd=sc.parallelize([-1]) for i in range(10000): rdd=rdd.union(sc.parallelize([i])) 每次插入数据,新建一个rdd,然后union. 后果是: java.lang.OutOfMemoryError: GC overhead limit exceeded at org.apache.spark.rdd

spark RDD transformation与action函数巩固 (未完)

1.创建RDD val lines = sc.parallelize(List("pandas","i like pandas")) 2.加载本地文件到RDD val linesRDD = sc.textFile("yangsy.txt") 3.过滤 filter 需要注意的是 filter并不会在原有RDD上过滤,而是根据filter的内容重新创建了一个RDD val spark = linesRDD.filter(line => lin

Apache Spark RDD(Resilient Distributed Datasets)论文

Spark RDD(Resilient Distributed Datasets)论文 概要 1: 介绍 2: Resilient Distributed Datasets(RDDs) 2.1 RDD 抽象 2.2 Spark 编程接口 2.2.1 例子 – 监控日志数据挖掘 2.3 RDD 模型的优势 2.4 不适合用 RDDs 的应用 3 Spark 编程接口 3.1 Spark 中 RDD 的操作 3.2 举例应用 3.2.1 线性回归 3.2.2 PageRank 4 表达 RDDs 5

Apache Spark RDD初谈3

RDD的转换和DAG的生成 Spark会根据用户提交的计算逻辑中的RDD的转换和动作来生成RDD之间的依赖关系,同时这个计算链也就生成了逻辑上的DAG.接下来以“Word Count”为例,详细描述这个DAG生成的实现过程. Spark Scala版本的Word Count程序如下: 1: val file = spark.textFile("hdfs://...") 2: val counts = file.flatMap(line => line.split(" &

Spark RDD使用详解1--RDD原理

RDD简介 在集群背后,有一个非常重要的分布式数据架构,即弹性分布式数据集(Resilient Distributed Dataset,RDD).RDD是Spark的最基本抽象,是对分布式内存的抽象使用,实现了以操作本地集合的方式来操作分布式数据集的抽象实现.RDD是Spark最核心的东西,它表示已被分区,不可变的并能够被并行操作的数据集合,不同的数据集格式对应不同的RDD实现.RDD必须是可序列化的.RDD可以cache到内存中,每次对RDD数据集的操作之后的结果,都可以存放到内存中,下一个操

Apache Spark 2.2.0 中文文档 - Spark RDD(Resilient Distributed Datasets)

Spark RDD(Resilient Distributed Datasets)论文 概要 1: 介绍 2: Resilient Distributed Datasets(RDDs) 2.1 RDD 抽象 2.2 Spark 编程接口 2.2.1 例子 – 监控日志数据挖掘 2.3 RDD 模型的优势 2.4 不适合用 RDDs 的应用 3 Spark 编程接口 3.1 Spark 中 RDD 的操作 3.2 举例应用 3.2.1 线性回归 3.2.2 PageRank 4 表达 RDDs 5

Spark RDD初探(一)

本文概要 本文主要从以下几点阐述RDD,了解RDD 什么是RDD? 两种RDD创建方式 向给spark传递函数Passing Functions to Spark 两种操作之转换Transformations 两种操作之行动Actions 惰性求值 RDD持久化Persistence 理解闭包Understanding closures 共享变量Shared Variables 总结 Working with Key-Value Pairs.Shuffle operations.patition

深入探究Spark -- RDD详解

Spark最基本.最根本的数据抽象 RDD基于内存,提高了迭代式.交互式操作的性能 RDD是只读的,只能通过其他RDD批量操作来创建,提高容错性    另外RDD还具有位置感知性调度和可伸缩性 RDD只支持粗粒度转换,记录Lineage,用于恢复丢失的分区,从物理存储的数据计算出相应的RDD分区 RDD的5个主要属性: 1.一组分片,默认的分片个数等于core数.BlockManager进行分配. 2.一个compute计算分区函数,对迭代器进行复合,以分片为单位 3.RDD之间的依赖关系,使数