动态规划求解矩阵连乘问题Java实现

首先我们来看看动态规划的四个步骤:

1. 找出最优解的性质,并且刻画其结构特性;

2. 递归的定义最优解;

3. 以自底向上的方式刻画最优值;

4. 根据计算最优值时候得到的信息,构造最优解

其中改进的动态规划算法:备忘录法,是以自顶向下的方式刻画最优值,对于动态规划方法和备忘录方法,两者的使用情况如下:

一般来讲,当一个问题的所有子问题都至少要解一次时,使用动态规划算法比使用备忘录方法好。此时,动态规划算法没有任何多余的计算。同时,对于许多问题,常常可以利用其规则的表格存取方式,减少动态规划算法的计算时间和空间需求。当子问题空间中的部分子问题可以不必求解时,使用备忘录方法则较为有利,因为从其控制结构可以看出,该方法只解那些确实需要求解的问题。

对于动态规划算法,我们必须明确两个基本要素,这两个要素对于在设计求解具体问题的算法时,是否选择动态规划算法具有指导意义:

1 算法有效性依赖于问题本身所具有的最优子结构性质:设计算法的第一步通常是要刻画最优解的结构。当问题的最优解包含了子问题的最优解时,称该问题具有最优子结构性质。问题的最优子结构性质提供了该问题可以使用动态规划算法求解的重要线索

在矩阵连乘积最优次序问题中注意到,若A1A2...An的最优完全加括号方式在Ak和Ak+1之间断开,则由此可以确定的子链A1A2A3...Ak和Ak+1Ak+2...An的完全加括号方式也最优,即该问题具有最优子结构性质。在分析该问题的最优子结构性质时候,所使用的方法具有普遍性。首先假设由原问题导出的子问题的借不是最优解,然后在设法说明在这个假设下可以构造出比原问题最优解更好的解,从而导致矛盾。

       在动态规划算法中,利用问题的最优子结构性质,以自底向上的方式递归的从子问题的最优解逐渐构造出整个问题的最优解。算法考察的子问题的空间规模较小。例如在举证连乘积的最优计算次序问题中,子问题空间由矩阵链的所有不用的子链组成。所有不用的子链的个数为o(n*n),因而子问题的空间规模为o(n*n)

2 可以用动态规划算法求解问题应该具备另一个基本要素是子问题的重叠性。在用递归算法自顶向下求解此问题时候,每次产生的子问题并不总是新问题,有些子问题被反复计算多次。动态规划算法正是利用了这种子问题的重叠性质,对每一个子问题都只是求解一次,而后将其保存到一个表格中,当再次需要解此问题时,只是简单使用常数时间查看一下结果。通常,不同子问题个数随着问题大小呈多项式增长。因此使用动态规划算法通常只是需要多项式时间,从而获得较高的解题效率。

下面是使用动态规划算法求解矩阵连乘问题的Java实现:

package dynamic_planning;

public class Strassen {
    /*
     * array[i][j]表示Ai...Aj相乘最少计算次数
     * s[i][j]=k,表示Ai...Aj这(j-i+1)个矩阵中最优子结构为Ai...Ak和A(k+1)...Aj
     * p[i]表示Ai的行数,p[i+1]表示Ai的列数
     */
	private int array[][];
	private int p[];
	private int s[][];

	public Strassen(){
		p=new int[]{2,4,5,5,3};
		array=new int[4][4];
		s=new int[4][4];
	}

	public Strassen(int n,int []p){
		this.p=new int[n+1];
		this.array=new int[n][n];
		this.s=new int[4][4];
		for(int i=0;i<p.length;i++)
			this.p[i]=p[i];
	}
	/*********************方法一,动态规划**********************************/
	public void martixChain(){
		int n=array.length;
		for(int i=0;i<n;i++)
			array[i][i]=0;
		for(int r=2;r<=n;r++){
			for(int i=0;i<=n-r;i++){
				int j=i+r-1;
				array[i][j]=array[i+1][j]+p[i]*p[i+1]*p[j+1];
				s[i][j]=i;
				for(int k=i+1;k<j;k++){
					int t=array[i][k]+array[k+1][j]+p[i]*p[k+1]*p[j];
					if(t<array[i][j]){
						array[i][j]=t;
						s[i][j]=k;
					}
				}
			}
		}
	}
	/*
	 * 如果待求矩阵为:Ap...Aq,then a=0,b=q-p
	 */
	public void traceBack(int a,int b){
		if(a<b){
			traceBack(a, s[a][b]);
			traceBack(s[a][b]+1, b);
			System.out.println("先把A"+a+"到A"+s[a][b]+"括起来,在把A"+(s[a][b]+1)+"到A"+b+"括起来,然后把A"+a+"到A"+b+"括起来");
		}
	}

	/*********************方法二:备忘录方法*****************************/
	public int memorizedMatrixChain(){
		int n=array.length;
		for(int i=0;i<n;i++){
			for(int j=i;j<n;j++)
				array[i][j]=0;
		}
		return lookUpChain(0,n-1);
	}

	public int lookUpChain(int a,int b){
		if(array[a][b]!=0)
			return array[a][b];
		if(a==b)
			return 0;
		array[a][b]=lookUpChain(a, a)+lookUpChain(a+1, b)+p[a]*p[a+1]*p[b+1];
		s[a][b]=a;
		for(int k=a+1;k<b;k++){
			int t=lookUpChain(a, k)+lookUpChain(k+1, b)+p[a]*p[k+1]*p[b+1];
			if(t<array[a][b]){
				array[a][b]=t;
				s[a][b]=k;
			}
		}
		return array[a][b];
	}
	public static void main(String[] args) {
		Strassen strassen=new Strassen();
		//strassen.martixChain();
		strassen.memorizedMatrixChain();
		strassen.traceBack(0, 3);
	}
}
时间: 2024-08-22 17:19:43

动态规划求解矩阵连乘问题Java实现的相关文章

动态规划之矩阵连乘

[问题描述] 给定n个矩阵{A1,A2,-,An},其中Ai与Ai+1是可乘的,i=1,2-,n-1.如何确定计算矩阵连乘积的计算次序,使得依此次序计算矩阵连乘积需要的数乘次数最少.例如,给定三个连乘矩阵{A1,A2,A3}的维数分别是10*100,100*5和5*50,采用(A1A2)A3,乘法次数为10*100*5+10*5*50=7500次,而采用A1(A2A3),乘法次数为100*5*50+10*100*50=75000次乘法,显然,最好的次序是(A1A2)A3,乘法次数为7500次.

[C++] 动态规划之矩阵连乘、最长公共子序列、最大子段和、最长单调递增子序列

一.动态规划的基本思想 动态规划算法通常用于求解具有某种最优性质的问题.在这类问题中,可能会有许多可行解.每一个解都对应于一个值,我们希望找到具有最优值的解. 将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解.适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的.若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次.如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间.为了

动态规划求解0-1背包问题

0-1背包问题是: 一个背包能承受的最大容量为max_weight,  现在有n个物品, 它们的重量分别是{w1,w2,w3,......wn}, 和价值分别是{v1,v2,......vn}, 现在要求在满足背包装载的物品不超过最大容量的前提下,保证装载的物品的价值最大? 动态规划求解过程可以这样理解: 对于前i件物品,背包剩余容量为j时,所取得的最大价值(此时称为状态3)只依赖于两个状态. 状态1:前i-1件物品,背包剩余容量为j.在该状态下,只要不选第i个物品,就可以转换到状态3. 状态2

算法导论--动态规划(矩阵链乘法)

矩阵链乘法问题 给定一个n个矩阵的序列?A1,A2,A3...An?,我们要计算他们的乘积:A1A2A3...An.因为矩阵乘法满足结合律,加括号不会影响结果.可是不同的加括号方法.算法复杂度有非常大的区别: 考虑矩阵链:?A1,A2,A3?.三个矩阵规模分别为10×100.100×5.5×50 假设按((A1A2)A3)方式,须要做10?100?5=5000次,再与A3相乘,又须要10?5?50=2500,共须要7500次运算: 假设按(A1(A2A3))方式计算.共须要100?5?50+10

动态规划之矩阵链乘法

矩阵链相乘 矩阵链乘法 求解矩阵链相乘问题时动态规划算法的另一个例子.给定一个n个矩阵的序列(矩阵链)<A1,A2,...,An>,我们希望计算它们的乘积 A1A2...An ?两个矩阵A和B只有相容(compatible),即A的列数等于B的行数时,才能相乘.如果A是p×q的矩阵,B是q×r的矩阵,那么乘积C是p×r的矩阵.计算C所需要时间由第8行的标量乘法的次数决定的,即pqr. ? ?以矩阵链<A1,A2,A3>为例,来说明不同的加括号方式会导致不同的计算代价.假设三个矩阵的

动态规划求解最长公共子序列

动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解.与分治法不同的是,适合于用动态规划求解的问题,经分解得到的子问题往往不是互相独立的.若用分治法来解决这类问题,则分解得到的子问题数目太多,以至于最后解决原问题需要耗费指数时间.然而,不同子问题的数目常常只有多项式量级.在用分治法求解时,有些子问题被重复计算了许多次.如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,从而得到多项式

利用QR算法求解矩阵的特征值和特征向量

利用QR算法求解矩阵的特征值和特征向量 为了求解一般矩阵(不是那种幼稚到shi的2 x 2矩阵)的特征值. 根据定义的话,很可能需要求解高阶方程... 这明显是个坑...高阶方程你肿么破... 折腾了好久 1.我要求特征值和特征向量. 2.找到一种算法QR分解矩阵求解特征值 3.QR矩阵分解需要Gram-schimidt正交化分解 有一种很明显的感觉,往往在现在很难有 很系统 很深入 的学习某一个学科的某一门知识. 往往学的时候"靠,学这东西有什么用""学了这么久,也不知道怎么用,不想学" 到后

动态规划求解最大字段和及其变种问题

动态规划(Dynamic Programming, DP)为一常用算法思想,本文讲述如何利用DP解决常见的最大字段和及其变种问题. 一. 最大字段和问题 问题定义 设数组为a[k],1≤k≤n,最大字段和X定义为: X=max1≤i≤j≤n{∑k=ija[k]} X直观含义即,求任一连续字数组的最大和. 问题分析 不妨设: b[j]=max1≤m≤j{∑k=mja[k]} 其中,1≤j≤n b[j]的直观含义为,以a[j]为结束元素的连续数组的最大和. 由X和b[j]的定义,易知: X=max1

1008-----算法笔记----------0-1背包问题(动态规划求解)

1.问题描述 给定n种物品和一个背包,物品i的重量是wi,其价值为vi,背包的容量为C.问:应该如何选择装入背包的物品,使得装入背包中物品的总价值最大? 2.问题分析 上述问题可以抽象为一个整数规划问题,即求满足 (a)Σwixi ≤ C:(b)xi ∈(0,1),  1≤i≤n:条件下,∑vixi最大时的一个物品xi序列.分析问题可以发现,该问题具有最优子结构性质,那么就可以尝试用动态规划方法求解,而动态规划求解的关键就是列出问题的递归关系表达式. 设m(i,j)为背包容量为j,可选物品为i,