Reciprocal cycles
Problem 26
A unit fraction contains 1 in the numerator. The decimal representation of the unit fractions with denominators 2 to 10 are given:
1/2 = 0.5 1/3 = 0.(3) 1/4 = 0.25 1/5 = 0.2 1/6 = 0.1(6) 1/7 = 0.(142857) 1/8 = 0.125 1/9 = 0.(1) 1/10 = 0.1
Where 0.1(6) means 0.166666..., and has a 1-digit recurring cycle. It can be seen that 1/7 has a 6-digit recurring cycle.
Find the value of d < 1000 for which 1/d contains the longest recurring cycle in its decimal fraction part.
|
python code:
def func(k): dict={} result='' left=1 while True: item=left*10//k left=left*10-item*k s=str(item)+"_"+str(left) tempValue=dict.get(s) if tempValue==None: dict[s]=len(result) result+=str(item) else: break return len(result)-tempValue result=7 num=6 for i in range(2,1000): temp=func(i) if temp>num: result,num=i,temp print(result)
time: <1s
时间: 2024-12-25 12:11:49