《Java并发编程实战》第十四章 构建自己的同步工具定义 札记

一、状态依赖性的管理

有界缓存实现的基类

@ ThreadSafe
public abstract class BaseBoundedBuffer<E> {
       @GuardeBy( "this" ) private final E[] buf;
       @GuardeBy( "this" ) private int tail;
       @GuardeBy( "this" ) private int head;
       @GuardeBy( "this" ) private int count;

       protected BaseBoundedBuffer( int capacity) {
             this .buf = (E[]) new Object[capacity];
      }

       protected synchronized final void doPut(E E) {
            buf[tail] = E;
             if (++tail == buf.length) {
                  tail = 0;
            }
            ++count;
      }

       protected synchronized final E doTake() {
            E E = buf[head];
            buf[head] = null ;
             if (++head == buf.length) {
                  head = 0;
            }
            --count;
             return E;
      }

       public synchronized final boolean isFull() {
             return count == buf.length;
      }

       public synchronized final boolean isEmpty() {
             return count == 0;
      }
}

1 演示样例:将前提条件的失败传递给调用者

@ ThreadSafe
public class GrumpyBoundedBuffer<V> extends BaseBoundedBuffer<V> {
       public GrumpyBoundedBuffer( int size){
             super (size);
      }

       public synchronized void put(V v){
             if (isFull()){
                   throw new BufferFullException ();
            }
            doPut(v);
      }

       public synchronized V take(){
             if (isEmpty())
                   throw new BufferEmptyExeption ();
             return doTake();
      }
}

缓存为空或者已满都不是异常情况,使用者必需要捕获这些异常才干进行正确的处理。

       while (true ){
             try {
                  V item = buffer.take();
                   // 对于item运行一些操作
                   break ;
            } catch (BufferEmptyException e) {
                  Thread. sleep(SLEEP_GRANULARITY );
            }
      }

2 演示样例:通过轮询与休眠来实现简单的堵塞

从上面的代码能够看出,堵塞与出现异常都须要方法的使用者来处理,如今尝试都封装到有界缓存中。

@ ThreadSafe
public class SleepyBoundedBuffer<V> extends BaseBoundedBuffer<V> {
       public SleepyBoundedBuffer( int size) {
             super (size);
      }

       public void put(V v) throws InterruptedException{
             while (true ){
                   synchronized (this ){
                         if (!isFull()){
                              doPut(v);
                               return ;
                        }
                  }
                  Thread.sleep(SLEEP_GRANULARITY);
            }
      }

       public V take() throws InterruptedException{
             while (true ){
                   synchronized (this ){
                         if (!isEmpty()){
                               return doTake();
                        }
                  }
                  Thread.sleep(SLEEP_GRANULARITY);
            }
      }
}

3 条件队列

不须要使用while(true),改为使用wait、notifyAll

@ ThreadSafe
public class BoundedBuffer<V> extends BaseBoundedBuffer<V> {

       // 条件谓词:not-full (!isFull())
       // 条件谓词:not-empty (!isEmpty())

       public BoundedBuffer( int size) {
             super (size);
      }

       // 堵塞并直道:not-full
       public synchronized void put(V v) throws InterruptedException{
             while (isFull()){
                  wait();
            }
            doPut(v);
            notifyAll();
      }

       // 堵塞并直道:not-empty
       public synchronized V take() throws InterruptedException{
             while (isEmpty()){
                  wait();
            }
            V v = doTake();
            notifyAll();
             return v;
      }
}

二、使用条件队列

1 条件谓词

要想正确地使用条件队列。关键是找出对象在哪个条件谓词上等待。

2 过早唤醒

比如:内置条件队列中有多个条件谓语,此时假设调用notifyAll其含义是通知全部wait,可是并不一定全部条件谓语都满足运行条件。

当使用条件等待时(比如Object.wait或Condition.await):

. 通常都有一个条件谓词--包含一些对象状态的測试。线程在运行前必须首先通过这些測试。

. 在调用wait之前測试条件谓词。而且从wait中返回时再次进行測试。

. 在一个循环中调用wait。

. 确保使用与条件队列相关的锁来保护构成条件谓词的各个状态变量。

. 当调用wait、notify或notifyAll等方法时。一定要持有与条件队列相关的锁。

. 在检查条件谓词之后以及開始运行对应的操作之前,不要释放锁。

3 丢失的信号

已经满足通知的条件发出通知。可是之后才进入堵塞wait状态。所以wait永远等不到在其前面发出的notify。

4 通知

5 演示样例:阀门类

6 子类的安全问题

7 封装条件队列

8 入口协议与出口协议

三、显式的Condition对象

四、Synchronizer剖析

五、AbstractQueuedSynchronizer

六、java.util.concurrent同步器类 AQS

1 ReentrantLock

2 Semaphore与CountDownLatch

3 FutureTask

4 ReentrantReadWriteLock

时间: 2024-10-08 10:04:01

《Java并发编程实战》第十四章 构建自己的同步工具定义 札记的相关文章

《Java并发编程实战》第四章 对象的组合 读书笔记

一.设计线程安全的类 在设计线程安全类的过程中,须要包括下面三个基本要素: . 找出构成对象状态的全部变量. . 找出约束状态变量的不变性条件. . 建立对象状态的并发訪问管理策略. 分析对象的状态,首先从对象的域開始. 变量按作用域划分: . 全局变量 . 局部变量 . 方法行參 . 异常处理參数 1. 收集同步需求 假设不了解对象的不变性条件与后验条件,那么就不能确保线程安全性.要满足在状态变量的有效值或状态转换上的各种约束条件.就须要借助原子性和封装性. 说的更简略些是Java线程安全都是

第十四章 构建自定义的同步工具

14.1 状态依赖性管理 基于先检查后执行的状态依赖性操作在多线程下常常发生一些我们不希望的结果.因此有必要对状态依赖操作进行管理, 构成前提条件的状态变量必须有对象的锁来保护,从而使他们在测试前提条件的同事保持不变. 如果条件尚未满足, 则必须释放锁. 下次测试前提条件之前则必须重新获取锁.之后再进行前提条件的测试 重试的实现方式 : 自旋等待. 在条件不成立时一直询问, 直到条件成立. 会消耗大量的CPU时间 休眠. 如果条件不成立, 则休眠一段时间, 休眠过后继续测试条件是否成立. 响应性

《Java并发编程实战》第十一章 性能与可伸缩性 读书笔记

造成开销的操作包括: 1. 线程之间的协调(例如:锁.触发信号以及内存同步等) 2. 增加的上下文切换 3. 线程的创建和销毁 4. 线程的调度 一.对性能的思考 1 性能与可伸缩性 运行速度涉及以下两个指标: 某个指定的任务单元需要"多快"才能处理完成.计算资源一定的情况下,能完成"多少"工作. 可伸缩性: 当增加计算资源时(例如:CPU.内存.存储容器或I/O带宽),程序的吞吐量或者处理能力能相应地增加. 2 评估各种性能权衡因素 避免不成熟的优化.首先使程序正

《Java并发编程实战》第三章 对象的共享 读书笔记

一.可见性 什么是可见性? Java线程安全须要防止某个线程正在使用对象状态而还有一个线程在同一时候改动该状态,并且须要确保当一个线程改动了对象的状态后,其它线程能够看到发生的状态变化. 后者就是可见性的描写叙述即多线程能够实时获取其它线程改动后的状态. *** 待补充   两个工人同一时候记录生产产品总数问题 1. 失效数据 可见性出现故障就是其它线程没有获取到改动后的状态,更直观的描写叙述就是其它线程获取到的数据是失效数据. 2. 非原子64位操作 3. 加锁与可见性 比如在一个变量的读取与

【Java并发编程实战】—– AQS(四):CLH同步队列

在[Java并发编程实战]-–"J.U.C":CLH队列锁提过,AQS里面的CLH队列是CLH同步锁的一种变形. 其主要从双方面进行了改造:节点的结构与节点等待机制.在结构上引入了头结点和尾节点,他们分别指向队列的头和尾,尝试获取锁.入队列.释放锁等实现都与头尾节点相关.而且每一个节点都引入前驱节点和后兴许节点的引用:在等待机制上由原来的自旋改成堵塞唤醒. 其结构例如以下: 知道其结构了,我们再看看他的实现.在线程获取锁时会调用AQS的acquire()方法.该方法第一次尝试获取锁假设

《Java并发编程实战》第六章 任务运行 读书笔记

一. 在线程中运行任务 无限制创建线程的不足 .线程生命周期的开销很高 .资源消耗 .稳定性 二.Executor框架 Executor基于生产者-消费者模式,提交任务的操作相当于生产者.运行任务的线程则相当于消费者. 1. Executors 返回 ExecutorService 2. ExecutorService方法submit.execute 3. ExecutorService.submit 返回 Future 线程池,Executors方法介绍 方法名 解释 newFixedThre

《Java并发编程实战》第五章 同步容器类 读书笔记

一.同步容器类 1. 同步容器类的问题 线程容器类都是线程安全的.可是当在其上进行符合操作则须要而外加锁保护其安全性. 常见符合操作包括: . 迭代 . 跳转(依据指定顺序找到当前元素的下一个元素) . 条件运算 迭代问题能够查看之前的文章 <Java ConcurrentModificationException 异常分析与解决方式> 二.并发容器 集合类型 非线程安全 线程安全 List ArrayList CopyOnWriteArrayList Set SortedSet Concur

《Java并发编程实战》第七章 取消与关闭 读书笔记

Java没有提供不论什么机制来安全地(抢占式方法)终止线程,尽管Thread.stop和suspend等方法提供了这种机制,可是因为存在着一些严重的缺陷,因此应该避免使用. 但它提供了中断Interruption机制,这是一种协作机制,可以使一个线程终止还有一个线程的当前工作. 一.任务取消 取消操作的原因: . 用户请求取消 . 有时间限制的操作 . 应用程序事件 . 错误 . 关闭 结束任务的四种方式: 1. run方法运行结束 2. 使用请求关闭标记(比如boolean开关) 3. 使用中

java并发编程实战:第七章----取消与关闭

Java没有提供任何机制来安全地终止线程(虽然Thread.stop和suspend方法提供了这样的机制,但由于存在缺陷,因此应该避免使用 中断:一种协作机制,能够使一个线程终止另一个线程的当前工作 立即停止会使共享的数据结构处于不一致的状态,需要停止时,发出中断请求,被要求中断的线程处理完他当前的任务后会自己判断是否停下来 一.任务取消 若外部代码能在某个操作正常完成之前将其置入"完成"状态,则还操作是可取消的.(用户请求取消.有时间限制的操作<并发查找结果,一个线程找到后可取