引言
《分布式系统理论基础 - 一致性、2PC和3PC》一文介绍了一致性、达成一致性需要面临的各种问题以及2PC、3PC模型,Paxos协议在节点宕机恢复、消息无序或丢失、网络分化的场景下能保证决议的一致性,是被讨论最广泛的一致性协议。
Paxos协议同时又以其“艰深晦涩”著称,下面结合 Paxos Made Simple、The Part-Time Parliament 两篇论文,尝试通过Paxos推演、学习和了解Paxos协议。
Basic Paxos
何为一致性问题?简单而言,一致性问题是在节点宕机、消息无序等场景可能出现的情况下,相互独立的节点之间如何达成决议的问题,作为解决一致性问题的协议,Paxos的核心是节点间如何确定并只确定一个值(value)。
也许你会疑惑只确定一个值能起什么作用,在Paxos协议里确定并只确定一个值是确定多值的基础,如何确定多值将在第二部分Multi Paxos中介绍,这部分我们聚焦在“Paxos如何确定并只确定一个值”这一问题上。
和2PC类似,Paxos先把节点分成两类,发起提议(proposal)的一方为proposer,参与决议的一方为acceptor。假如只有一个proposer发起提议,并且节点不宕机、消息不丢包,那么acceptor做到以下这点就可以确定一个值:
P1. 一个acceptor接受它收到的第一项提议
当然上面要求的前提条件有些严苛,节点不能宕机、消息不能丢包,还只能由一个proposer发起提议。我们尝试放宽条件,假设多个proposer可以同时发起提议,又怎样才能做到确定并只确定一个值呢?
首先proposer和acceptor需要满足以下两个条件:
1. proposer发起的每项提议分别用一个ID标识,提议的组成因此变为(ID, value)
2. acceptor可以接受(accept)不止一项提议,当多数(majority,或quorum) acceptor接受一项提议时该提议被确定(chosen)
(注: 注意以上“接受”和“确定”的区别)
我们约定后面发起的提议的ID比前面提议的ID大,并假设可以有多项提议被确定,为做到确定并只确定一个值acceptor要做到以下这点:
P2. 如果一项值为v的提议被确定,那么后续只确定值为v的提议
(注: 乍看这个条件不太好理解,谨记目标是“确定并只确定一个值”)
由于一项提议被确定(chosen)前必须先被acceptor接受(accepted),为实现P2,实质上acceptor需要做到:
P2a. 如果一项值为v的提议被确定,那么acceptor后续只接受值为v的提议
满足P2a即满足P2 (P2a => P2)。
目前在多个proposer可以同时发起提议的情况下,满足P1、P2a即能做到确定并只确定一个值。如果再加上节点宕机恢复、消息丢包的考量呢?
假设acceptor c 宕机一段时间后恢复,c 宕机期间其他acceptor已经通过了一项值为v的决议但c 因为宕机并不知晓;c 恢复后如果有proposer马上发起一项值不是v的提议,由于条件P1,c 会接受该提议,这与P2a矛盾。为了避免这样的情况出现,进一步地我们对proposer作约束:
P2b. 如果一项值为v的提议被确定,那么proposer后续只发起值为v的提议
满足P2b即满足P2a (P2b => P2a => P2)。
P2b约束的是提议被确定(chosen)后proposer的行为,我们更关心提议被确定前proposer应该怎么做:
P2c. 对于提议(n,v),acceptor的多数派S中,如果存在acceptor最近一次(即ID值最大)接受的提议的值为v‘,那么要求v = v‘;否则v可为任意值
满足P2c即满足P2b (P2c => P2b => P2a => P2)。
光看P2c的描述可能会觉得一头雾水,我们通过 The Part-Time Parliament 中的例子加深理解:
假设有A~E 5个acceptor,- 表示acceptor因宕机等原因缺席当次决议,x 表示acceptor不接受提议,o 表示接受提议;多数派acceptor接受提议后提议被确定,以上表格对应的决议过程如下:
- ID为2的提议最早提出,根据P2c其提议值可为任意值,这里假设为a
- acceptor A/B/C/E 在之前的决议中没有接受(accept)任何提议,因而ID为5的提议的值也可以为任意值,这里假设为b
- acceptor B/D/E,其中D曾接受ID为2的提议,根据P2c,该轮ID为14的提议的值必须与ID为2的提议的值相同,为a
- acceptor A/C/D,其中D曾接受ID为2的提议、C曾接受ID为5的提议,相比之下ID 5较ID 2大,根据P2c,该轮ID为27的提议的值必须与ID为5的提议的值相同,为b;该轮决议被多数派acceptor接受,因此该轮决议得以通过
- acceptor B/C/D,3个acceptor之前都接受过提议,相比之下C、D曾接受的ID 27的ID号最大,该轮ID为29的提议的值必须与ID为27的提议的值相同,为b
以上提到的各项约束条件可以归纳为3点,如果proposer/acceptor满足下面3点,那么在少数节点宕机、网络分化隔离的情况下,在“确定并只确定一个值”这件事情上可以保证一致性(consistency):
- B1(ß): ß中每一轮决议都有唯一的ID标识
- B2(ß): 如果决议B被acceptor多数派接受,则通过决议B
- B3(ß): 对于ß中的任意提议B(n,v),acceptor的多数派中如果存在acceptor最近一次(即ID值最大)接受的提议的值为v‘,那么要求v = v‘;否则v可为任意值
(注: 希腊字母ß表示多轮决议的集合,字母B表示一轮决议)
另外为保证P2c,我们对acceptor进行两项约束:
1. 记录曾接受的ID最大的提议,因proposer需要问询该信息以决定提议值
2. 在回应提议ID为n的proposer自己曾接受过ID最大的提议时,acceptor同时保证(promise)不再接受ID小于n的提议
proposer/acceptor完成一轮决议可归纳为prepare和accept两个阶段,图示如下:
还有一个问题需要考量,假如proposer A发起ID为n的提议,在提议未完成前proposer B又发起ID为n+1的提议,在n+1提议未完成前proposer C又发起ID为n+2的提议…… 如此不能完成决议、形成活锁(livelock),虽然这不影响一致性,但我们一般不想让这样的情况发生。解决的方法是从proposer中选出一个leader,统一由proposer leader发起提议避免活锁。
最后我们再引入一个新的角色:learner,learner依附于acceptor,用于习得已通过的决议。以上决议过程都只要求acceptor多数派参与,而我们希望尽量所有acceptor的状态一致。如果部分acceptor因宕机等原因未知晓已通过决议,宕机恢复后可经本机learner采用pull的方式从其他acceptor习得。
Multi Paxos
通过以上步骤分布式系统已经能确定一个值,“只确定一个值有什么用?这可解决不了我面临的问题。” 你心中可能有这样的疑问。
其实不断地进行“确定一个值”的过程,就能确定具有全序关系(total order)的系列值,进而能应用到数据库副本存储等很多场景。我们把单次“确定一个值”的过程称为实例(instance),它由proposer/acceptor/learner组成,下图说明了A/B/C三机上的实例:
不同序号的实例之间互相不影响,A/B/C三机输入相同、过程实质等同于执行相同序列的状态机(state machine)指令 ,因而将得到一致的结果。
proposer leader在Multi Paxos中还有助于提升性能,常态下统一由leader发起提议,可节省prepare步骤(leader不用问询acceptor曾接受过的ID最大的提议、只有leader提议也不需要acceptor进行promise)直到发生leader宕机、网络丢包等。
小结
以上介绍了Paxos的推演过程、如何在Basic Paxos的基础上通过状态机构建Multi Paxos。Paxos协议比较“艰深晦涩”,但多读几遍论文一般能理解其内涵,更难的是如何将Paxos真正应用到工程实践。
微信后台开发同学实现并开源了一套基于Paxos协议的多机状态拷贝类库PhxPaxos,PhxPaxos用于将单机服务扩展到多机,其经过线上系统验证并在一致性保证、性能等方面作了很多考量。
--
本文提到的一些概念包括一致性(consistency)、一致性系统模型(system model)、多数派(quorum)、全序关系(total order)等,在以下文章中有介绍 :)
--