How Many Fibs?
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 4235 Accepted Submission(s): 1669
Problem Description
Recall the definition of the Fibonacci numbers:
f1 := 1
f2 := 2
fn := fn-1 + fn-2 (n >= 3)
Given two numbers a and b, calculate how many Fibonacci numbers are in the range [a, b].
Input
The input contains several test cases. Each test case consists of two non-negative integer numbers a and b. Input is terminated by a = b = 0. Otherwise, a <= b <= 10^100. The numbers a and b are given with no superfluous leading zeros.
Output
For each test case output on a single line the number of Fibonacci numbers fi with a <= fi <= b.
Sample Input
10 100
1234567890 9876543210
0 0
Sample Output
5
4
题意:
给定范围[a,b](a<=b<=10^100),求在这范围内的斐波那契数有多少个。
思路:
在我印象中,1000项的斐波那契数好像就有200多位了,枚举1---1000项的斐波那契数放到数组里,然后strcmp求在[a,b]之间的斐波那契的个数。
代码:
1 #include <cstdio> 2 #include <cstring> 3 #include <algorithm> 4 #include <vector> 5 #include <iostream> 6 using namespace std; 7 8 char a[110], b[110]; 9 char f[1005][500]; 10 int f1[500]; 11 int f2[500]; 12 13 void init_f(){ //高精度加法初始化斐波那契数f[] 14 strcpy(f[0],"1"); 15 strcpy(f[1],"1"); 16 int i, j, k, l, r; 17 for(i=2;i<=1000;i++){ 18 int n1=strlen(f[i-2]); 19 int n2=strlen(f[i-1]); 20 memset(f1,0,sizeof(f1)); 21 memset(f2,0,sizeof(f2)); 22 for(j=n1-1;j>=0;j--) f1[j]=f[i-2][n1-j-1]-‘0‘; 23 for(j=n2-1;j>=0;j--) f2[j]=f[i-1][n2-j-1]-‘0‘; 24 int c=0; 25 while(j<=max(n1,n2)){ 26 f1[j]=f1[j]+f2[j]+c; 27 if(f1[j]>=10) { 28 f1[j]-=10;c=1; 29 } 30 else c=0; 31 j++; 32 } 33 k=max(n1,n2); 34 while(!f1[k]) k--; //去掉后面多余的0 35 for(j=k;j>=0;j--) f[i][j]=f1[k-j]+‘0‘; 36 37 } 38 } 39 40 41 main() 42 { 43 init_f(); 44 int ans; 45 while(scanf("%s%s",a,b)!=EOF&&(strcmp(a,"0")||strcmp(b,"0"))){ 46 int n1=strlen(a), n2=strlen(b); 47 int flag; 48 if(n1==n2) flag=1; 49 else flag=0; 50 ans=0; 51 for(int i=1;i<=1000;i++){ 52 int n=strlen(f[i]); 53 if(flag){ //当a和b的长度一样时 54 if(n==n1&&strcmp(f[i],a)>=0&&strcmp(f[i],b)<=0) ans++; 55 if(n>n1||n==n1&&strcmp(f[i],b)>0) break; 56 continue; 57 } 58 if(n>n2||n==n2&&strcmp(f[i],b)>0) break; //当a和b的长度不一样时 59 if(n>n1&&n<n2) { 60 ans++;continue; 61 } 62 if(n==n1&&strcmp(f[i],a)>=0) ans++; 63 if(n==n2&&strcmp(f[i],b)<=0) ans++; 64 } 65 printf("%d\n",ans); 66 } 67 }
HDU 1316 斐波那契数列+高精度,布布扣,bubuko.com