Ubuntu16.04 + cuda8.0 + GTX1080安装教程

1. 安装Ubuntu16.04

不考虑双系统,直接安装 Ubuntu16.04,从 ubuntu官方 下载64位版本: ubuntu-16.04-desktop-amd64.iso 。

在MAC下制作了 Ubuntu USB 安装盘,具体方法可参考: 在MAC下使用ISO制作Linux的安装USB盘 ,之后通过Bios引导U盘启动安装Ubuntu系统:

1)一开始安装就踩了一个坑,选择”Install Ubuntu”回车后过一会儿屏幕显示“输入不支持”,google了好多方案,最终和ubuntu对显卡的支持有关,需要手动添加显卡选项: nomodeset,使其支持Nvidia系列显卡,参考: 安装ubuntu黑屏问题的解决 or How do I set ‘nomodeset’ after I’ve already installed Ubuntu?

2) 磁盘分区,全部干掉之前主机自带的Window 10系统,分区为 /boot, /, /home 等几个目录,同时把第二块4T硬盘也挂载了上去,作为数据盘。

3)安装完毕后Ubuntu 16.04的分辨率很低,在显卡驱动未安装之前,可以手动修改一下grub文件:

sudo vim /etc/default/grub

# The resolution used on graphical terminal 
# note that you can use only modes which your graphic card supports via VBE 
# you can see them in real GRUB with the command `vbeinfo’ 
#GRUB_GFXMODE=640×480 
# 这里分辨率自行设置 
GRUB_GFXMODE=1024×768

sudo update-grub

4)安装SSH Server,这样可以远程ssh访问这台GTX1080主机:

sudo apt-get install openssh-server

5)更新Ubuntu16.04源,用的是 中科大的源 :

cd /etc/apt/ 
sudo cp sources.list sources.list.bak 
sudo vi sources.list

把下面的这些源添加到source.list文件头部:

deb http://mirrors.ustc.edu.cn/ubuntu/ xenial main restricted universe multiverse 
deb http://mirrors.ustc.edu.cn/ubuntu/ xenial-security main restricted universe multiverse 
deb http://mirrors.ustc.edu.cn/ubuntu/ xenial-updates main restricted universe multiverse 
deb http://mirrors.ustc.edu.cn/ubuntu/ xenial-proposed main restricted universe multiverse 
deb http://mirrors.ustc.edu.cn/ubuntu/ xenial-backports main restricted universe multiverse 
deb-src http://mirrors.ustc.edu.cn/ubuntu/ xenial main restricted universe multiverse 
deb-src http://mirrors.ustc.edu.cn/ubuntu/ xenial-security main restricted universe multiverse 
deb-src http://mirrors.ustc.edu.cn/ubuntu/ xenial-updates main restricted universe multiverse 
deb-src http://mirrors.ustc.edu.cn/ubuntu/ xenial-proposed main restricted universe multiverse 
deb-src http://mirrors.ustc.edu.cn/ubuntu/ xenial-backports main restricted universe multiverse

最后更新源和更新已安装的包:

sudo apt-get update 
sudo apt-get upgrade

2. 安装GTX1080驱动

安装 Nvidia 驱动 367.27

sudo add-apt-repository ppa:graphics-drivers/ppa

第一次运行出现如下的警告:

Fresh drivers from upstream, currently shipping Nvidia.

## Current Status

We currently recommend: nvidia−361nvidia-361, Nvidia’s current long lived branch. 
For GeForce 8 and 9 series GPUs use nvidia−340nvidia-340 
For GeForce 6 and 7 series GPUs use nvidia−304nvidia-304

## What we’re working on right now:

– Normal driver updates– Investigating how to bring this goodness to distro on a cadence.

## WARNINGS:

This PPA is currently in testing, you should be experienced with packaging before you dive in here. Give us a few days to sort out the kinks.

Volunteers welcome! See also: https://github.com/mamarley/nvidia-graphics-drivers/

http://www.ubuntu.com/download/desktop/contribute 
更多信息: https://launchpad.net/~graphics-drivers/+archive/ubuntu/ppa 
按回车继续或者 Ctrl+c 取消添加

回车后继续:

sudo apt-get update 
sudo apt-get install nvidia-367 
sudo apt-get install mesa-common-dev 
sudo apt-get install freeglut3-dev

之后重启系统让GTX1080显卡驱动生效。

3. 下载和安装CUDA

在安装 CUDA 之前,google了一下,发现在Ubuntu16.04下安装CUDA7.5问题多多,幸好CUDA8已出,支持GTX1080:

New in CUDA 8

Pascal Architecture Support 
Out of box performance improvements on Tesla P100, supports GeForce GTX 1080 
Simplify programming using Unified memory on Pascal including support for large datasets, concurrent data access and atomics* 
Optimize Unified Memory performance using new data migration APIs* 
Faster Deep Learning using optimized cuBLAS routines for native FP16 computation 
Developer Tools 
Quickly identify latent system-level bottlenecks using the new critical path analysis feature 
Improve productivity with up to 2x faster NVCC compilation speed 
Tune OpenACC applications and overall host code using new profiling extensions 
Libraries 
Accelerate graph analytics algorithms with nvGRAPH 
New cuBLAS matrix multiply optimizations for matrices with sizes smaller than 512 and for batched operation

不过下载CUDA需要注册和登陆NVIDIA开发者账号, CUDA8下载页面 提供了很详细的系统选择和安装说明,

这里选择了Ubuntu16.04系统runfile安装方案,千万不要选择deb方案,前方无数坑:

下载的“cuda_8.0.27_linux.run”有1.4G,按照Nivdia官方给出的方法安装CUDA8:

sudo sh cuda_8.0.27_linux.run --tmpdir=/opt/temp/

这里加了–tmpdir主要是直接运行“sudo sh cuda_8.0.27_linux.run”会提示空间不足的错误,其实是全新的电脑主机,硬盘足够大的,google了以下发现加个tmpdir就可以了:

Not enough space on parition mounted at /.Need 5091561472 bytes.

Disk space check has failed. Installation cannot continue.

执行后会有一系列提示让你确认,非常非常非常非常关键的地方是是否安装361这个低版本的驱动:

Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 361.62?

答案必须是n,否则之前安装的GTX1080驱动就白费了,而且问题多多。

Logging to /opt/temp//cuda_install_6583.log 
Using more to view the EULA. 
End User License Agreement 
————————–

Preface——-

The following contains specific license terms and conditions 
for four separate NVIDIA products. By accepting this 
agreement, you agree to comply with all the terms and 
conditions applicable to the specific product(s) included 
herein.

Do you accept the previously read EULA?accept/decline/quit: accept

Install NVIDIA Accelerated Graphics Driver for Linux-x86_64 361.62?(y)es/(n)o/(q)uit: n

Install the CUDA 8.0 Toolkit?(y)es/(n)o/(q)uit: y

Enter Toolkit Location[ default is /usr/local/cuda-8.0 ]:

Do you want to install a symbolic link at /usr/local/cuda?(y)es/(n)o/(q)uit: y

Install the CUDA 8.0 Samples?(y)es/(n)o/(q)uit: y

Enter CUDA Samples Location[ default is /home/textminer ]:

Installing the CUDA Toolkit in /usr/local/cuda-8.0 … 
Installing the CUDA Samples in /home/textminer … 
Copying samples to /home/textminer/NVIDIA_CUDA-8.0_Samples now… 
Finished copying samples.

=========== 
= Summary = 
===========

Driver: Not Selected 
Toolkit: Installed in /usr/local/cuda-8.0 
Samples: Installed in /home/textminer

Please make sure that 
– PATH includes /usr/local/cuda-8.0/bin 
– LD_LIBRARY_PATH includes /usr/local/cuda-8.0/lib64, or, add /usr/local/cuda-8.0/lib64 to /etc/ld.so.conf and run ldconfig as root

To uninstall the CUDA Toolkit, run the uninstall script in /usr/local/cuda-8.0/bin

Please see CUDA_Installation_Guide_Linux.pdf in /usr/local/cuda-8.0/doc/pdf for detailed information on setting up CUDA.

***WARNING: Incomplete installation! This installation did not install the CUDA Driver. A driver of version at least 361.00 is required for CUDA 8.0 functionality to work. 
To install the driver using this installer, run the following command, replacing with the name of this run file: 
sudo .run -silent -driver

Logfile is /opt/temp//cuda_install_6583.log

安装完毕后,再声明一下环境变量,并将其写入到 ~/.bashrc 的尾部:

export PATH=/usr/local/cuda-8.0/bin${PATH:+:${PATH}}export LD_LIBRARY_PATH=/usr/local/cuda-8.0/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}

最后再来测试一下CUDA,运行:

nvidia-smi

结果如下所示:

再来试几个CUDA例子:

cd 1_Utilities/deviceQuerymake

这里如果提示gcc版本过高,可以安装低版本的gcc并做软连接替换,具体方法请自行google,我在用低版本的gcc4.9替换了ubuntu16.04自带的gcc5.x版本。

“/usr/local/cuda-8.0″/bin/nvcc -ccbin g++ -I../../common/inc -m64 -gencode arch=compute_20,code=sm_20 -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_37,code=sm_37 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_52,code=sm_52 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_60,code=compute_60 -o deviceQuery.o -c deviceQuery.cpp 
“/usr/local/cuda-8.0″/bin/nvcc -ccbin g++ -m64 -gencode arch=compute_20,code=sm_20 -gencode arch=compute_30,code=sm_30 -gencode arch=compute_35,code=sm_35 -gencode arch=compute_37,code=sm_37 -gencode arch=compute_50,code=sm_50 -gencode arch=compute_52,code=sm_52 -gencode arch=compute_60,code=sm_60 -gencode arch=compute_60,code=compute_60 -o deviceQuery deviceQuery.o 
mkdir -p ../../bin/x86_64/linux/release 
cp deviceQuery ../../bin/x86_64/linux/release

执行 ./deviceQuery ,得到:

./deviceQuery Starting…

CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: “GeForce GTX 1080” 
CUDA Driver Version / Runtime Version 8.0 / 8.0 
CUDA Capability Major/Minor version number: 6.1 
Total amount of global memory: 8112 MBytes (8506179584 bytes) 
(20) Multiprocessors, (128) CUDA Cores/MP: 2560 CUDA Cores 
GPU Max Clock rate: 1835 MHz (1.84 GHz) 
Memory Clock rate: 5005 Mhz 
Memory Bus Width: 256-bit 
L2 Cache Size: 2097152 bytes 
Maximum Texture Dimension Size (x,y,z) 1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384) 
Maximum Layered 1D Texture Size, (num) layers 1D=(32768), 2048 layers 
Maximum Layered 2D Texture Size, (num) layers 2D=(32768, 32768), 2048 layers 
Total amount of constant memory: 65536 bytes 
Total amount of shared memory per block: 49152 bytes 
Total number of registers available per block: 65536 
Warp size: 32 
Maximum number of threads per multiprocessor: 2048 
Maximum number of threads per block: 1024 
Max dimension size of a thread block (x,y,z): (1024, 1024, 64) 
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535) 
Maximum memory pitch: 2147483647 bytes 
Texture alignment: 512 bytes 
Concurrent copy and kernel execution: Yes with 2 copy engine(s) 
Run time limit on kernels: Yes 
Integrated GPU sharing Host Memory: No 
Support host page-locked memory mapping: Yes 
Alignment requirement for Surfaces: Yes 
Device has ECC support: Disabled 
Device supports Unified Addressing (UVA): Yes 
Device PCI Domain ID / Bus ID / location ID: 0 / 1 / 0 
Compute Mode: 
<Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 8.0, CUDA Runtime Version = 8.0, NumDevs = 1, Device0 = GeForce GTX 1080Result = PASS

再测试试一下nobody:

cd ../../5_Simulations/nbody/make

执行:

./nbody -benchmark -numbodies=256000 -device=0

得到:

> Windowed mode 
> Simulation data stored in video memory 
> Single precision floating point simulation 
> 1 Devices used for simulation 
gpuDeviceInit() CUDA Device [0]: “GeForce GTX 1080 
> Compute 6.1 CUDA device: [GeForce GTX 1080] 
number of bodies = 256000 
256000 bodies, total time for 10 iterations: 2291.469 ms 
= 286.000 billion interactions per second 
= 5719.998 single-precision GFLOP/s at 20 flops per interaction

参考: 
Nvidia GTX 1080 on Ubuntu 16.04 for Deep Learning 
Ubuntu 16.04下安装Tensorflow(GPU) 
ubuntu16.04安装 cuda7.5 
Ubuntu16.04无法安装CUDA吗? 
Ubuntu16.04+matlab2014a+anaconda2+OpenCV3.1+caffe安装 
ubuntu 16.04 编译opencv3.1,opencv多版本切换 
TensorFlow, Caffe, Chainer と Deep Learning大御所を一気に source code build で GPU向けに setupしてみた 
feature request: support for cuda 8.0 rc 
GTX 1080 CUDA performance on Linux (Ubuntu 16.04) preliminary results (nbody and NAMD) 
Anyone able to run Tensorflow with 1070/1080 on Ubuntu 16.04/15.10/15.04? 
Tensorflow on Ubuntu 16.04 with Nvidia GTX 1080

时间: 2024-10-03 13:27:51

Ubuntu16.04 + cuda8.0 + GTX1080安装教程的相关文章

ubuntu16.04 cuda8.0 opencv3.2.0 caffe安装

安装过程 1.安装相关依赖项 sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler sudo apt-get install --no-install-recommends libboost-all-dev sudo apt-get install libopenblas-dev liblapack-dev libat

Ubuntu16.04+cuda8.0+cuDNNV5.1 + Tensorflow+ GT 840M安装小结

最近重装系统,安装了tensorflow的配置环境 总结一下. 参考资料http://blog.csdn.net/ZWX2445205419/article/details/69429518http://blog.csdn.net/u013294888/article/details/56666023http://www.2cto.com/kf/201612/578337.htmlhttp://blog.csdn.net/10km/article/details/61915535 NVIDIA驱

ubuntu16.04+cuda8.0+cudnn6.0安装mxnet(极简!+成功!)

安装MXNet 1.安装 CUDA8.0对应的mxnet版本是mxnet-cu80(同理如果是CUDA9.0对应版本则是mxnet-cu90). 如果pip安装过慢,请参考 Ubuntu16.10下配置pip国内镜像源加速安装进行加速. $ sudo pip install --pre mxnet-cu80 # CUDA 8.0 2.验证安装成功 $ python或者python3 # 在python命令行中import mxnet,不报错即安装成功 import mxnet as mx a =

ubuntu16.04+cuda8.0+cudnn5.0+caffe

ubuntu安装过程(硬盘安装)http://www.cnblogs.com/zhbzz2007/p/5493395.html"但是千万不要用麒麟版!!!比原版体验要差很多!!!"开关机的时候电脑最上面 有一行 提示 一晃即过,/dev/sda6: clean(未知,单没关系)http://blog.csdn.net/xuezhisdc/article/details/48649575(意义) 1.教程1http://blog.csdn.net/zwyjg/article/detail

深度学习(TensorFlow)环境搭建:(三)Ubuntu16.04+CUDA8.0+cuDNN7+Anaconda4.4+Python3.6+TensorFlow1.3

紧接着上一篇的文章<深度学习(TensorFlow)环境搭建:(二)Ubuntu16.04+1080Ti显卡驱动>,这篇文章,主要讲解如何安装CUDA+CUDNN,不过前提是我们是已经把NVIDIA显卡驱动安装好了 一.安装CUDA CUDA(Compute Unified Device Architecture),是英伟达公司推出的一种基于新的并行编程模型和指令集架构的通用计算架构,它能利用英伟达GPU的并行计算引擎,比CPU更高效的解决许多复杂计算任务,想使用GPU就必须要使用CUDA.

Ubuntu16.04 +cuda8.0+cudnn+caffe+theano+tensorflow配置明细

本文为原创作品,未经本人同意,禁止转载,禁止用于商业用途!本人对博客使用拥有最终解释权 欢迎关注我的博客:http://blog.csdn.net/hit2015spring和http://www.cnblogs.com/xujianqing 本文主要是介绍在ubuntu16.04下,怎么配置当下流行的深度学习框架,cuda8.0+cudnn+caffe+theano+tensorflow 安装英伟达显卡驱动 首先去官网上查看适合你GPU的驱动 (http://www.nvidia.com/Do

Ubuntu16.04+cuda8.0+cudnn6.0+tensorflow1.3

安装时参考了https://www.jianshu.com/p/69a10d0a24b9 但由于版本不同,这里主要记录安装包路径, 一些注意事项,和基本过程. CUDA8.0下载地址:https://developer.nvidia.com/cuda-80-ga2-download-archive 选择runfile类型 打开下载目录,然后: 1.sudo sh cuda_8.0.61_375.26_linux.run 注意:在安装时 Install NVIDIA Accelerated Gra

配置YOLO2(ubuntu16.04+cuda8.0+opencv3.1.0)

要求已经安装好了CUDA 8.0 以及OpenCV3.1.0 YOLO官方网站 配置darknet git clone https://github.com/pjreddie/darknet cd darknet make 如果没有报错输入 ./darknet 得到输出 ./darknet <function> 说明darknet配置成功 打开Makefile文件,将开头几行改为 GPU=1 CUDNN=1 OPENCV=1 接着查询自己GPU的计算能力,查看Makefile是否包含,如下我的

Ubuntu16.04+cuda8.0rc+opencv3.1.0+caffe+Theano+torch7搭建教程

https://blog.csdn.net/jywowaa/article/details/52263711 学习中用到深度学习的框架,需要搭建caffe.theano和torch框架.经过一个月的不懈奋战,终于搭建好了框架.现在分享简单的搭建过程,为后面要用到深度学习框架的同学节省时间,写了这个博客.因为框架的搭建过程会出现各种问题,不同的硬件(如笔记本.台式机).不同的软件(如依赖库.编译器)和软件的版本(如编译器版本不同,编译框架时会找不到依赖库路径)之间有上百种组合,网络中遇到问题的情况